Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Calculate depth of a full Binary tree from Preorder
Next article icon

Boundary Traversal of binary tree

Last Updated : 08 Feb, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a binary tree, the task is to find the boundary nodes of the binary tree Anti-Clockwise starting from the root.

Boundary-Traversal-of-Binary-Tree--banner

The boundary includes:

  1. left boundary (nodes on left excluding leaf nodes)
  2. leaves (consist of only the leaf nodes)
  3. right boundary (nodes on right excluding leaf nodes)

The left boundary is defined as the path from the root to the left-most leaf node (excluding leaf node itself).
The right boundary is defined as the path from the root to the right-most leaf node (excluding leaf node itself).

Note: If the root doesn’t have a left subtree or right subtree, then the root itself is the left or right boundary. 

Table of Content

  • [Approach – 1] Using Recursion – O(n) Time and O(h) Space
  • [Approach – 2] Using Iteration and Morris Traversal – O(n) Time and O(1) Space

[Approach – 1] Using Recursion – O(n) Time and O(h) Space

The idea is to traverse the boundary of the binary tree in three parts:

  • Collect Left Boundary Nodes: Collects all nodes from the root’s left child, excluding leaf nodes, until a leaf is reached.
  • Collect Leaf Nodes: Using recursion traverse the tree and collect all leaf nodes in the result.
  • Collect Right Boundary Nodes: Collects all nodes from the root’s right child, excluding leaf nodes, in reverse order.

By combining these parts, we achieve the desired boundary traversal. Each part is collected using recursive functions for left boundary, leaf nodes, and right boundary traversal.

C++
//Driver Code Starts{ // C++ implementation for Boundary  // Traversal of Binary Tree using recursion #include <iostream> #include <vector> using namespace std;  class Node {   public:     int data;     Node *left;     Node *right;      Node(int x) {         data = x;         left = right = nullptr;     } }; //Driver Code Ends }   bool isLeaf(Node *node) {     return node->left == nullptr && node->right == nullptr; }  // Function to collect left boundary nodes // (top-down order) void collectBoundaryLeft(Node* root, vector<int>& res) {   	// exclude leaf node     if (root == nullptr || isLeaf(root))         return; 	   	res.push_back(root->data);     if (root->left)          collectBoundaryLeft(root->left, res);          else if (root->right)         collectBoundaryLeft(root->right, res); }  // Function to collect all leaf nodes  void collectLeaves(Node *root, vector<int> &res) {     if (root == nullptr)         return; 	   	// Add leaf nodes     if (isLeaf(root)) {         res.push_back(root->data);         return;     }      collectLeaves(root->left, res);     collectLeaves(root->right, res); }   // Function to collect right boundary nodes // (bottom-up order) void collectBoundaryRight(Node* root, vector<int>& res) {   	// exclude leaf nodes     if (root == nullptr || isLeaf(root))          return;      if (root->right)         collectBoundaryRight(root->right, res);      else if (root->left)          collectBoundaryRight(root->left, res); 	 	res.push_back(root->data);   }  // Function to find Boundary Traversal of Binary Tree vector<int> boundaryTraversal(Node *root) { 	vector<int> res;      if (!root)         return res;      // Add root data if it's not a leaf     if (!isLeaf(root))         res.push_back(root->data);      // Collect left boundary     collectBoundaryLeft(root->left, res);      // Collect leaf nodes     collectLeaves(root, res);      // Collect right boundary     collectBoundaryRight(root->right, res);      return res; }   //Driver Code Starts{ int main() {      // Hardcoded Binary tree     //        20     //       /  \     //      8    22     //     / \     \     //    4   12    25     //       /  \     //      10   14     Node *root = new Node(20);     root->left = new Node(8);     root->right = new Node(22);     root->left->left = new Node(4);     root->left->right = new Node(12);     root->left->right->left = new Node(10);     root->left->right->right = new Node(14);     root->right->right = new Node(25);      vector<int> boundary = boundaryTraversal(root);      for (int x : boundary)         cout << x << " ";      return 0; }  //Driver Code Ends } 
Java
//Driver Code Starts{ // Java implementation for Boundary Traversal of Binary Tree using recursion import java.util.ArrayList;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = right = null;     } }  class GfG { //Driver Code Ends }       static boolean isLeaf(Node node) {         return node.left == null && node.right == null;     }      // Function to collect left boundary nodes     // (top-down order)     static void collectBoundaryLeft(Node root, ArrayList<Integer> res) {         if (root == null || isLeaf(root))             return;          res.add(root.data);         if (root.left != null)             collectBoundaryLeft(root.left, res);         else if (root.right != null)             collectBoundaryLeft(root.right, res);     }      // Function to collect all leaf nodes     static void collectLeaves(Node root, ArrayList<Integer> res) {         if (root == null)             return;          if (isLeaf(root)) {             res.add(root.data);             return;         }          collectLeaves(root.left, res);         collectLeaves(root.right, res);     }      // Function to collect right boundary nodes     // (bottom-up order)     static void collectBoundaryRight(Node root, ArrayList<Integer> res) {         if (root == null || isLeaf(root))             return;          if (root.right != null)             collectBoundaryRight(root.right, res);         else if (root.left != null)             collectBoundaryRight(root.left, res);          res.add(root.data);     } 	   	// Function to find Boundary Traversal of Binary Tree     static ArrayList<Integer> boundaryTraversal(Node root) {         ArrayList<Integer> res = new ArrayList<>();          if (root == null)             return res;          // Add root data if it's not a leaf         if (!isLeaf(root))             res.add(root.data);          // Collect left boundary         collectBoundaryLeft(root.left, res);          // Collect leaf nodes         collectLeaves(root, res);          // Collect right boundary         collectBoundaryRight(root.right, res);          return res;     }   //Driver Code Starts{     public static void main(String[] args) {          // Hardcoded Binary tree         //        20         //       /  \         //      8    22         //     / \     \         //    4   12    25         //       /  \         //      10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         root.right.right = new Node(25);          ArrayList<Integer> boundary = boundaryTraversal(root);          for (int x : boundary)             System.out.print(x + " ");     } }  //Driver Code Ends } 
Python
#Driver Code Starts{ # Python implementation for Boundary Traversal of Binary Tree using recursion  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None #Driver Code Ends }   def isLeaf(node):     return node.left is None and node.right is None  # Function to collect left boundary nodes # (top-down order) def collectBoundaryLeft(root, res):     if root is None or isLeaf(root):         return      res.append(root.data)     if root.left:         collectBoundaryLeft(root.left, res)     elif root.right:         collectBoundaryLeft(root.right, res)  # Function to collect all leaf nodes def collectLeaves(root, res):     if root is None:         return      if isLeaf(root):         res.append(root.data)         return      collectLeaves(root.left, res)     collectLeaves(root.right, res)  # Function to collect right boundary nodes # (bottom-up order) def collectBoundaryRight(root, res):     if root is None or isLeaf(root):         return      if root.right:         collectBoundaryRight(root.right, res)     elif root.left:         collectBoundaryRight(root.left, res)      res.append(root.data)  # Function to find Boundary Traversal of Binary Tree def boundaryTraversal(root):     res = []      if not root:         return res      # Add root data if it's not a leaf     if not isLeaf(root):         res.append(root.data)      # Collect left boundary     collectBoundaryLeft(root.left, res)      # Collect leaf nodes     collectLeaves(root, res)      # Collect right boundary     collectBoundaryRight(root.right, res)      return res   #Driver Code Starts{ if __name__ == "__main__":        # Hardcoded Binary tree     #        20     #       /  \     #      8    22     #     / \     \     #    4   12    25     #       /  \     #      10   14     root = Node(20)     root.left = Node(8)     root.right = Node(22)     root.left.left = Node(4)     root.left.right = Node(12)     root.left.right.left = Node(10)     root.left.right.right = Node(14)     root.right.right = Node(25)      boundary = boundaryTraversal(root)             print(' '.join(map(str, boundary)))  #Driver Code Ends } 
C#
//Driver Code Starts{ // C# implementation for Boundary  // Traversal of Binary Tree using recursion using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = right = null;     } }  class GfG { //Driver Code Ends }       static bool isLeaf(Node node) {         return node.left == null && node.right == null;     }      // Function to collect left boundary nodes     // (top-down order)     static void collectBoundaryLeft(Node root, List<int> res) {         if (root == null || isLeaf(root))             return;          res.Add(root.data);         if (root.left != null)             collectBoundaryLeft(root.left, res);         else if (root.right != null)             collectBoundaryLeft(root.right, res);     }      // Function to collect all leaf nodes     static void collectLeaves(Node root, List<int> res) {         if (root == null)             return;          if (isLeaf(root)) {             res.Add(root.data);             return;         }          collectLeaves(root.left, res);         collectLeaves(root.right, res);     }      // Function to collect right boundary nodes     // (bottom-up order)     static void collectBoundaryRight(Node root, List<int> res) {         if (root == null || isLeaf(root))             return;          if (root.right != null)             collectBoundaryRight(root.right, res);         else if (root.left != null)             collectBoundaryRight(root.left, res);          res.Add(root.data);     } 	   	// Function to find Boundary Traversal of Binary Tree     static List<int> boundaryTraversal(Node root) {         List<int> res = new List<int>();          if (root == null)             return res;          // Add root data if it's not a leaf         if (!isLeaf(root))             res.Add(root.data);          // Collect left boundary         collectBoundaryLeft(root.left, res);          // Collect leaf nodes         collectLeaves(root, res);          // Collect right boundary         collectBoundaryRight(root.right, res);          return res;     }   //Driver Code Starts{ 	static void Main(string[] args) {          // Hardcoded Binary tree         //        20         //       /  \         //      8    22         //     / \     \         //    4   12    25         //       /  \         //      10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         root.right.right = new Node(25);          List<int> boundary = boundaryTraversal(root);          Console.WriteLine(string.Join(" ", boundary));     } }    //Driver Code Ends } 
JavaScript
//Driver Code Starts{ // JavaScript implementation for Boundary Traversal of Binary Tree using recursion class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } } //Driver Code Ends }   function isLeaf(node) {     return !node.left && !node.right; }  // Function to collect left boundary nodes // (top-down order) function collectBoundaryLeft(root, res) {     if (!root || isLeaf(root)) return;      res.push(root.data);     if (root.left) {         collectBoundaryLeft(root.left, res);     } else if (root.right) {         collectBoundaryLeft(root.right, res);     } }  // Function to collect all leaf nodes function collectLeaves(root, res) {     if (!root) return;      if (isLeaf(root)) {         res.push(root.data);         return;     }      collectLeaves(root.left, res);     collectLeaves(root.right, res); }  // Function to collect right boundary nodes // (bottom-up order) function collectBoundaryRight(root, res) {     if (!root || isLeaf(root)) return;      if (root.right) {         collectBoundaryRight(root.right, res);     } else if (root.left) {         collectBoundaryRight(root.left, res);     }      res.push(root.data); }  // Function to find Boundary Traversal of Binary Tree function boundaryTraversal(root) {     const res = [];      if (!root) return res;      // Add root data if it's not a leaf     if (!isLeaf(root)) {         res.push(root.data);     }      // Collect left boundary     collectBoundaryLeft(root.left, res);      // Collect leaf nodes     collectLeaves(root, res);      // Collect right boundary     collectBoundaryRight(root.right, res);      return res; }   //Driver Code Starts{ // Driver code // Hardcoded Binary tree //        20 //       /  \ //      8    22 //     / \     \ //    4   12    25 //       /  \ //      10   14 const root = new Node(20); root.left = new Node(8); root.right = new Node(22); root.left.left = new Node(4); root.left.right = new Node(12); root.left.right.left = new Node(10); root.left.right.right = new Node(14); root.right.right = new Node(25);  const boundary = boundaryTraversal(root); console.log(boundary.join(" ")); //Driver Code Ends } 

Output
20 8 4 10 14 25 22 

[Approach – 2] Using Iteration and Morris Traversal – O(n) Time and O(1) Space

The idea is to reduce the auxiliary space used by the memory stack in the above approach. This approach is similar to the previous one, but instead of recursion, we use iteration to find the left and right boundaries, and use Morris Traversal to find the leaf nodes.

C++
//Driver Code Starts{ // C++ implementation for Boundary Traversal of Binary Tree // using Iteration with Morris Traversal #include <iostream> #include <vector> using namespace std;  class Node {   public:     int data;     Node *left;     Node *right;      Node(int x) {         data = x;         left = right = nullptr;     } }; //Driver Code Ends }   bool isLeaf(Node *node) {     return node->left == nullptr && node->right == nullptr; }  // Function to collect the left boundary nodes void collectBoundaryLeft(Node *root, vector<int> &res) {     if (root == nullptr)         return;      Node *curr = root;     while (!isLeaf(curr)) {         res.push_back(curr->data);          if (curr->left)             curr = curr->left;         else             curr = curr->right;     } }  // Function to collect the leaf nodes using Morris Traversal void collectLeaves(Node* root, vector<int>& res) {     Node* current = root;      while (current) {         if (current->left == nullptr) {                        // If it's a leaf node             if (current->right == nullptr)                  res.push_back(current->data);                          current = current->right;         }        	else {                        // Find the inorder predecessor             Node* predecessor = current->left;             while (predecessor->right && predecessor->right != current) {                 predecessor = predecessor->right;             }              if (predecessor->right == nullptr) {                 predecessor->right = current;                 current = current->left;             }            	else {               	// If it's predecessor is a leaf node                 if (predecessor->left == nullptr)                      res.push_back(predecessor->data);                                  predecessor->right = nullptr;                 current = current->right;             }         }     } }  // Function to collect the right boundary nodes void collectBoundaryRight(Node *root, vector<int> &res) {     if (root == nullptr)         return;      Node *curr = root;     vector<int> temp;     while (!isLeaf(curr)) {                temp.push_back(curr->data);          if (curr->right)             curr = curr->right;         else             curr = curr->left;     }     for (int i = temp.size() - 1; i >= 0; --i)         res.push_back(temp[i]); }  // Function to perform boundary traversal vector<int> boundaryTraversal(Node *root) {     vector<int> res;      if (!root)         return res;      // Add root data if it's not a leaf     if (!isLeaf(root))         res.push_back(root->data);      // Collect left boundary     collectBoundaryLeft(root->left, res);      // Collect leaf nodes     collectLeaves(root, res);      // Collect right boundary     collectBoundaryRight(root->right, res);      return res; }   //Driver Code Starts{ int main() {      // Hardcoded Binary tree     //        20     //       /  \     //      8    22     //     / \     \     //    4   12    25     //       /  \     //      10   14     Node *root = new Node(20);     root->left = new Node(8);     root->right = new Node(22);     root->left->left = new Node(4);     root->left->right = new Node(12);     root->left->right->left = new Node(10);     root->left->right->right = new Node(14);     root->right->right = new Node(25);      vector<int> boundary = boundaryTraversal(root);      for (int x : boundary)         cout << x << " ";      return 0; } //Driver Code Ends } 
Java
//Driver Code Starts{ // Java implementation for Boundary Traversal of Binary Tree // using Iteration with Morris Traversal import java.util.ArrayList;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = right = null;     } }  class GfG { //Driver Code Ends }       static boolean isLeaf(Node node) {         return node.left == null && node.right == null;     } 	   	// Function to collect the left boundary nodes     static void collectBoundaryLeft(Node root, ArrayList<Integer> res) {         if (root == null)             return;          Node curr = root;         while (!isLeaf(curr)) {             res.add(curr.data);              if (curr.left != null)                 curr = curr.left;             else                 curr = curr.right;         }     }      // Function to collect the leaf nodes using Morris Traversal     static void collectLeaves(Node root, ArrayList<Integer> res) {         Node current = root;          while (current != null) {             if (current.left == null) {                                // If it's a leaf node                 if (current.right == null)                      res.add(current.data);                  current = current.right;             }            	else {                                // Find the inorder predecessor                 Node predecessor = current.left;                 while (predecessor.right != null && predecessor.right != current) {                     predecessor = predecessor.right;                 }                  if (predecessor.right == null) {                     predecessor.right = current;                     current = current.left;                 }                	else {                   	// If it's predecessor is a leaf node                     if (predecessor.left == null)                          res.add(predecessor.data);                                          predecessor.right = null;                     current = current.right;                 }             }         }     }       // Function to collect the right boundary nodes     static void collectBoundaryRight(Node root, ArrayList<Integer> res) {         if (root == null)             return;          Node curr = root;         ArrayList<Integer> temp = new ArrayList<>();         while (!isLeaf(curr)) {             temp.add(curr.data);              if (curr.right != null)                 curr = curr.right;             else                 curr = curr.left;         }          for (int i = temp.size() - 1; i >= 0; --i)             res.add(temp.get(i));     }      // Function to perform boundary traversal     static ArrayList<Integer> boundaryTraversal(Node root) {         ArrayList<Integer> res = new ArrayList<>();          if (root == null)             return res;          // Add root data if it's not a leaf         if (!isLeaf(root))             res.add(root.data);          // Collect left boundary         collectBoundaryLeft(root.left, res);          // Collect leaf nodes         collectLeaves(root, res);          // Collect right boundary         collectBoundaryRight(root.right, res);          return res;     }  //Driver Code Starts{      public static void main(String[] args) {         // Hardcoded Binary tree         //        20         //       /  \         //      8    22         //     / \     \         //    4   12    25         //       /  \         //      10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         root.right.right = new Node(25);          ArrayList<Integer> boundary = boundaryTraversal(root);          for (int x : boundary)             System.out.print(x + " ");     } } //Driver Code Ends } 
Python
#Driver Code Starts{ # Python implementation for Boundary Traversal  # of Binary Tree using Iteration with Morris Traversal  class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None #Driver Code Ends }    # Helper function to check if a node is a leaf def isLeaf(node):     return node.left is None and node.right is None   # Function to collect the left boundary nodes def collectBoundaryLeft(root, res):     if root is None:         return      curr = root     while not isLeaf(curr):         res.append(curr.data)          if curr.left:             curr = curr.left         else:             curr = curr.right  # Function to collect the leaf nodes using Morris Traversal def collectLeaves(root, res):     current = root      while current:         if current.left is None:           	             # To include Rightmost leaf node             if current.right is None:                 res.append(current.data)                          current = current.right                      else:             # Find the inorder predecessor             predecessor = current.left             while predecessor.right and predecessor.right != current:                 predecessor = predecessor.right                              if predecessor.right is None:                                  predecessor.right = current                 current = current.left             else:               	# If it's predecessor is a leaf node                 if (predecessor.left is None) :                     res.append(predecessor.data)                 predecessor.right = None                 current = current.right                  # Function to collect the right boundary nodes def collectBoundaryRight(root, res):     if root is None:         return      curr = root     temp = []     while not isLeaf(curr):         temp.append(curr.data)          if curr.right:             curr = curr.right         else:             curr = curr.left      res.extend(reversed(temp))  # Function to perform boundary traversal def boundaryTraversal(root):     res = []      if not root:         return res      # Add root data if it's not a leaf     if not isLeaf(root):         res.append(root.data)      # Collect left boundary     collectBoundaryLeft(root.left, res)      # Collect leaf nodes     collectLeaves(root, res)      # Collect right boundary     collectBoundaryRight(root.right, res)      return res  #Driver Code Starts{      if __name__ == "__main__":        # Hardcoded Binary tree     #        20     #       /  \     #      8    22     #     / \     \     #    4   12    25     #       /  \     #      10   14     root = Node(20)     root.left = Node(8)     root.right = Node(22)     root.left.left = Node(4)     root.left.right = Node(12)     root.left.right.left = Node(10)     root.left.right.right = Node(14)     root.right.right = Node(25)      boundary = boundaryTraversal(root)     print(" ".join(map(str, boundary)))   #Driver Code Ends } 
C#
//Driver Code Starts{ // C# implementation for Boundary Traversal of Binary Tree // using Iteration with Morris Traversal using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = right = null;     } }  class GfG { //Driver Code Ends }       // Helper function to check if a node is a leaf     static bool isLeaf(Node node) {         return node.left == null && node.right == null;     }    	// Function to collect the left boundary nodes     static void collectBoundaryLeft(Node root, List<int> res) {         if (root == null)             return;          Node curr = root;         while (!isLeaf(curr)) {             res.Add(curr.data);              if (curr.left != null)                 curr = curr.left;             else                 curr = curr.right;         }     }      // Function to collect the leaf nodes using Morris Traversal     static void collectLeaves(Node root, List<int> res) {         Node current = root;          while (current != null) {             if (current.left == null) {                 // If it's a leaf node                 if (current.right == null)                      res.Add(current.data);                                  current = current.right;             } else {                 // Find the inorder predecessor                 Node predecessor = current.left;                 while (predecessor.right != null && predecessor.right != current) {                     predecessor = predecessor.right;                 }                  if (predecessor.right == null) {                     predecessor.right = current;                     current = current.left;                 }                	else {                                      	// If it's predecessor is a leaf node                     if (predecessor.left == null)                          res.Add(predecessor.data);                                          predecessor.right = null;                     current = current.right;                 }             }         }     }       // Function to collect the right boundary nodes     static void collectBoundaryRight(Node root, List<int> res) {         if (root == null)             return;          Node curr = root;         List<int> temp = new List<int>();         while (!isLeaf(curr)) {             temp.Add(curr.data);              if (curr.right != null)                 curr = curr.right;             else                 curr = curr.left;         }          temp.Reverse();         res.AddRange(temp);     }      // Function to perform boundary traversal     static List<int> boundaryTraversal(Node root) {         List<int> res = new List<int>();          if (root == null)             return res;          // Add root data if it's not a leaf         if (!isLeaf(root))             res.Add(root.data);          // Collect left boundary         collectBoundaryLeft(root.left, res);          // Collect leaf nodes         collectLeaves(root, res);          // Collect right boundary         collectBoundaryRight(root.right, res);          return res;     }  //Driver Code Starts{      static void Main(string[] args) {          // Hardcoded Binary tree         //        20         //       /  \         //      8    22         //     / \     \         //    4   12    25         //       /  \         //      10   14         Node root = new Node(20);         root.left = new Node(8);         root.right = new Node(22);         root.left.left = new Node(4);         root.left.right = new Node(12);         root.left.right.left = new Node(10);         root.left.right.right = new Node(14);         root.right.right = new Node(25);          List<int> boundary = boundaryTraversal(root);          foreach (int x in boundary) {             Console.Write(x + " ");         }     } }  //Driver Code Ends } 
JavaScript
//Driver Code Starts{ // JavaScript implementation for Boundary Traversal // of Binary Tree using Iteration with Morris Traversal  class Node {     constructor(data) {         this.data = data;         this.left = null;         this.right = null;     } //Driver Code Ends }  }  // Helper function to check if a node is a leaf function isLeaf(node) {     return !node.left && !node.right; }  // Function to collect the left boundary nodes function collectBoundaryLeft(root, res) {     if (root === null) return;      let curr = root;     while (!isLeaf(curr)) {         res.push(curr.data);          if (curr.left) curr = curr.left;         else curr = curr.right;     } }  // Function to collect the leaf nodes using Morris Traversal function collectLeaves(root, res) {     let current = root;      while (current) {         if (!current.left) {             // If it's a leaf node             if (!current.right)                  res.push(current.data);                          current = current.right;         }          else {             // Find the inorder predecessor             let predecessor = current.left;             while (predecessor.right && predecessor.right !== current) {                 predecessor = predecessor.right;             }              if (!predecessor.right) {                 predecessor.right = current;                 current = current.left;             }              else {             	// If it's predecessor is a leaf node                 if (!predecessor.left)                      res.push(predecessor.data);                                  predecessor.right = null;                 current = current.right;             }         }     } }  // Function to collect the right boundary nodes function collectBoundaryRight(root, res) {     if (root === null) return;      let curr = root;     const temp = [];     while (!isLeaf(curr)) {         temp.push(curr.data);          if (curr.right) curr = curr.right;         else curr = curr.left;     }      res.push(...temp.reverse()); }  // Function to perform boundary traversal function boundaryTraversal(root) {     const res = [];      if (!root) return res;      // Add root data if it's not a leaf     if (!isLeaf(root)) res.push(root.data);      // Collect left boundary     collectBoundaryLeft(root.left, res);      // Collect leaf nodes     collectLeaves(root, res);      // Collect right boundary     collectBoundaryRight(root.right, res);      return res; }  //Driver Code Starts{  // Driver code  // Hardcoded Binary tree //        20 //       /  \ //      8    22 //     / \     \ //    4   12    25 //       /  \ //      10   14 const root = new Node(20); root.left = new Node(8); root.right = new Node(22); root.left.left = new Node(4); root.left.right = new Node(12); root.left.right.left = new Node(10); root.left.right.right = new Node(14); root.right.right = new Node(25);  const boundary = boundaryTraversal(root); console.log(boundary.join(" "));  //Driver Code Ends } 

Output
20 8 4 10 14 25 22 


Next Article
Calculate depth of a full Binary tree from Preorder
author
kartik
Improve
Article Tags :
  • DSA
  • Tree
  • Accolite
  • Amazon
  • Hike
  • Kritikal Solutions
  • Microsoft
  • Morgan Stanley
  • Payu
  • Snapdeal
Practice Tags :
  • Accolite
  • Amazon
  • Hike
  • Kritikal Solutions
  • Microsoft
  • Morgan Stanley
  • Payu
  • Snapdeal
  • Tree

Similar Reads

  • Binary Tree Data Structure
    A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
    3 min read
  • Introduction to Binary Tree
    Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Representation of Binary TreeEach node in a Binar
    15+ min read
  • Properties of Binary Tree
    This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levels Note: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A binary tree can have at most
    4 min read
  • Applications, Advantages and Disadvantages of Binary Tree
    A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
    2 min read
  • Binary Tree (Array implementation)
    Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
    6 min read
  • Maximum Depth of Binary Tree
    Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node. Examples: Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which h
    11 min read
  • Insertion in a Binary Tree in level order
    Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner. Examples: Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner. Approach:
    8 min read
  • Deletion in a Binary Tree
    Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
    12 min read
  • Enumeration of Binary Trees
    A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
    3 min read
  • Types of Binary Tree

    • Types of Binary Tree
      We have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe
      7 min read

    • Complete Binary Tree
      We know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t
      7 min read

    • Perfect Binary Tree
      What is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w
      4 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences