Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Interview Questions on Array
  • Practice Array
  • MCQs on Array
  • Tutorial on Array
  • Types of Arrays
  • Array Operations
  • Subarrays, Subsequences, Subsets
  • Reverse Array
  • Static Vs Arrays
  • Array Vs Linked List
  • Array | Range Queries
  • Advantages & Disadvantages
Open In App
Next Article:
Queries to calculate Bitwise AND of an array with updates
Next article icon

Bitwise AND of sub-array closest to K

Last Updated : 17 May, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer array arr[] of size N and an integer K, the task is to find the sub-array arr[i….j] where i ? j and compute the bitwise AND of all sub-array elements say X then print the minimum value of |K – X| among all possible values of X.

Example:  

Input: arr[] = {1, 6}, K = 3 
Output: 2 
 

Sub-arrayBitwise AND|K – X|
{1}12
{6}63
{1, 6}12


Input: arr[] = {4, 7, 10}, K = 2 
Output: 0 
 


Method 1: 
Find the bitwise AND of all possible sub-arrays and keep track of the minimum possible value of |K – X|.

Below is the implementation of the above approach: 

C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std;  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array int closetAND(int arr[], int n, int k) {     int ans = INT_MAX;      // Check all possible sub-arrays     for (int i = 0; i < n; i++) {          int X = arr[i];         for (int j = i; j < n; j++) {             X &= arr[j];              // Find the overall minimum             ans = min(ans, abs(k - X));         }     }     return ans; }  // Driver code int main() {     int arr[] = { 4, 7, 10 };     int n = sizeof(arr) / sizeof(arr[0]);     int k = 2;     cout << closetAND(arr, n, k);      return 0; } 
Java
// Java implementation of the approach import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.io.*;  class GFG {      // Function to return the minimum possible value     // of |K - X| where X is the bitwise AND of     // the elements of some sub-array     static int closetAND(int arr[], int n, int k)     {         int ans = Integer.MAX_VALUE;          // Check all possible sub-arrays         for (int i = 0; i < n; i++) {              int X = arr[i];             for (int j = i; j < n; j++) {                 X &= arr[j];                  // Find the overall minimum                 ans = Math.min(ans, Math.abs(k - X));             }         }         return ans;     }      // Driver code     public static void main(String[] args)     {         int arr[] = { 4, 7, 10 };         int n = arr.length;         int k = 2;         System.out.println(closetAND(arr, n, k));     } }  // This code is contributed by jit_t 
Python
# Python implementation of the approach  # Function to return the minimum possible value # of |K - X| where X is the bitwise AND of # the elements of some sub-array def closetAND(arr, n, k):      ans = 10**9      # Check all possible sub-arrays     for i in range(n):          X = arr[i]          for j in range(i,n):             X &= arr[j]              # Find the overall minimum             ans = min(ans, abs(k - X))              return ans  # Driver code arr = [4, 7, 10] n = len(arr) k = 2; print(closetAND(arr, n, k))  # This code is contributed by mohit kumar 29 
C#
// C# implementation of the approach  using System;  class GFG {       // Function to return the minimum possible value      // of |K - X| where X is the bitwise AND of      // the elements of some sub-array      static int closetAND(int []arr, int n, int k)      {          int ans = int.MaxValue;           // Check all possible sub-arrays          for (int i = 0; i < n; i++)         {               int X = arr[i];              for (int j = i; j < n; j++)             {                  X &= arr[j];                   // Find the overall minimum                  ans = Math.Min(ans, Math.Abs(k - X));              }          }          return ans;      }       // Driver code      public static void Main()      {          int []arr = { 4, 7, 10 };          int n = arr.Length;          int k = 2;                   Console.WriteLine(closetAND(arr, n, k));      }  }   // This code is contributed by AnkitRai01 
JavaScript
<script>  // Javascript implementation of the approach  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array function closetAND(arr, n, k) {     let ans = Number.MAX_VALUE;      // Check all possible sub-arrays     for(let i = 0; i < n; i++)     {         let X = arr[i];         for(let j = i; j < n; j++)         {             X &= arr[j];              // Find the overall minimum             ans = Math.min(ans, Math.abs(k - X));         }     }     return ans; }  // Driver code let arr = [4, 7, 10 ]; let n = arr.length; let k = 2;  document.write(closetAND(arr, n, k));      // This code is contributed by sravan kumar  </script> 
PHP
<?php // PHP implementation of the approach  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array function closetAND(&$arr, $n, $k) {     $ans = PHP_INT_MAX;      // Check all possible sub-arrays     for ($i = 0; $i < $n; $i++)      {          $X = $arr[$i];         for ($j = $i; $j < $n; $j++)          {             $X &= $arr[$j];              // Find the overall minimum             $ans = min($ans, abs($k - $X));         }     }     return $ans; }      // Driver code     $arr = array( 4, 7, 10 );     $n = sizeof($arr) / sizeof($arr[0]);     $k = 2;     echo closetAND($arr, $n, $k);      return 0;          // This code is contributed by ChitraNayal ?> 

Output
0

Time complexity: O(n2)

Auxiliary Space: O(1), as no extra space is required.

Method 2: 
It can be observed that while performing AND operation in the sub-array, the value of X can remain constant or decrease but will never increase. 
Hence, we will start from the first element of a sub-array and will be doing bitwise AND and comparing the |K – X| with the current minimum difference until X ? K because after that |K – X| will start increasing. 

Below is the implementation of the above approach:  

C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std;  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array int closetAND(int arr[], int n, int k) {     int ans = INT_MAX;      // Check all possible sub-arrays     for (int i = 0; i < n; i++) {          int X = arr[i];         for (int j = i; j < n; j++) {             X &= arr[j];              // Find the overall minimum             ans = min(ans, abs(k - X));              // No need to perform more AND operations             // as |k - X| will increase             if (X <= k)                 break;         }     }     return ans; }  // Driver code int main() {     int arr[] = { 4, 7, 10 };     int n = sizeof(arr) / sizeof(arr[0]);     int k = 2;     cout << closetAND(arr, n, k);      return 0; } 
Java
// Java implementation of the approach class GFG  {  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array static int closetAND(int arr[], int n, int k) {     int ans = Integer.MAX_VALUE;      // Check all possible sub-arrays     for (int i = 0; i < n; i++)      {          int X = arr[i];         for (int j = i; j < n; j++)          {             X &= arr[j];              // Find the overall minimum             ans = Math.min(ans, Math.abs(k - X));              // No need to perform more AND operations             // as |k - X| will increase             if (X <= k)                 break;         }     }     return ans; }  // Driver code public static void main(String[] args)  {     int arr[] = { 4, 7, 10 };     int n = arr.length;     int k = 2;     System.out.println(closetAND(arr, n, k)); } }  // This code is contributed by Princi Singh 
Python
# Python implementation of the approach import sys  # Function to return the minimum possible value # of |K - X| where X is the bitwise AND of # the elements of some sub-array def closetAND(arr, n, k):     ans = sys.maxsize;      # Check all possible sub-arrays     for i in range(n):          X = arr[i];         for j in range(i,n):             X &= arr[j];              # Find the overall minimum             ans = min(ans, abs(k - X));              # No need to perform more AND operations             # as |k - X| will increase             if (X <= k):                 break;     return ans;  # Driver code arr = [4, 7, 10 ]; n = len(arr); k = 2; print(closetAND(arr, n, k));  # This code is contributed by PrinciRaj1992 
C#
// C# implementation of the approach using System;           class GFG  {  // Function to return the minimum possible value // of |K - X| where X is the bitwise AND of // the elements of some sub-array static int closetAND(int []arr, int n, int k) {     int ans = int.MaxValue;      // Check all possible sub-arrays     for (int i = 0; i < n; i++)      {          int X = arr[i];         for (int j = i; j < n; j++)          {             X &= arr[j];              // Find the overall minimum             ans = Math.Min(ans, Math.Abs(k - X));              // No need to perform more AND operations             // as |k - X| will increase             if (X <= k)                 break;         }     }     return ans; }  // Driver code public static void Main(String[] args)  {     int []arr = { 4, 7, 10 };     int n = arr.Length;     int k = 2;     Console.WriteLine(closetAND(arr, n, k)); } }  // This code has been contributed by 29AjayKumar 
JavaScript
<script>         // Javascript implementation of the approach          // Function to return the minimum possible value     // of |K - X| where X is the bitwise AND of     // the elements of some sub-array     function closetAND(arr, n, k)     {         let ans = Number.MAX_VALUE;          // Check all possible sub-arrays         for (let i = 0; i < n; i++)         {              let X = arr[i];             for (let j = i; j < n; j++)             {                 X &= arr[j];                  // Find the overall minimum                 ans = Math.min(ans, Math.abs(k - X));                  // No need to perform more AND operations                 // as |k - X| will increase                 if (X <= k)                     break;             }         }         return ans;     }          let arr = [ 4, 7, 10 ];     let n = arr.length;     let k = 2;     document.write(closetAND(arr, n, k));  </script> 

Output
0

Time complexity: O(n2)

Auxiliary Space: O(1)


Method 3: Method 3: Using Segment Trees and Binary Search

The time complexity of the brute force approach is O(n^2) because we’re checking the bitwise AND for all possible sub-arrays. We can speed up the process by adopting two new strategies:

1. Segment trees to retrieve the bitwise AND operation result in logarithmic time.

2. Binary search to find the value closest to K in logarithmic time.

Here’s a step-by-step explanation of the approach:

  • Create a segment tree to store the bitwise AND of a range of elements in the array. Each node in the segment tree represents the bitwise AND of a range of elements in the array.
  • Since the bitwise AND operation is associative, the operation result of a range `[a, b]` can be calculated from the operation results of sub-ranges `[a, k]` and `[k+1, b]` where `a <= k < b`, which enables the efficiency of segment trees for range queries.
  • Iterate through the elements of the array, treating each successive element as the starting point of a potential sub-array. For every starting position, we leverage the non-increasing nature of the bitwise AND of an expanding sub-array.
  • Implement a binary search for the ending position that maximizes the bitwise AND of that subarray while remaining larger than or equal to K. We check the midpoint for feasibility and, based on that, decide whether to move the endpoint or the starting point of the search.
  • As the ending position expands while maintaining the bitwise AND larger than or equal to K, it forms an interval. The largest value of the bitwise AND operation in the interval gives the closest value to K achievable by any sub-array that begins at the current starting position.
  • Calculate the absolute difference between K and this maximal bitwise AND, and keep track of the minimum difference achieved over all starting positions.

Below is the implementation of above approach:

C++
#include <algorithm> #include <iostream> #include <vector> using namespace std;  #define INF INT32_MAX  // Segment Tree class to perform task optimally class SegmentTree { public:     vector<int> tree;     int n;      // Constructor     SegmentTree(vector<int>& arr)     {         n = arr.size();         tree.resize(4 * n);         build(arr, 0, 0, n - 1);     }      // Function to build the Segment Tree     void build(vector<int>& arr, int node, int start,                int end)     {         if (start == end) {             tree[node] = arr[start];         }         else {             int mid = (start + end) / 2;             build(arr, 2 * node + 1, start, mid);             build(arr, 2 * node + 2, mid + 1, end);              // bitwise AND of the children nodes             tree[node]                 = tree[2 * node + 1] & tree[2 * node + 2];         }     }      // Overloading query function to be used recursively     int query(int l, int r)     {         return query(0, 0, n - 1, l, r);     }      // query function to get bitwise AND of the range     int query(int node, int start, int end, int l, int r)     {         if (r < start || end < l) {             return INF;         }         if (l <= start && end <= r) {             return tree[node];         }         int mid = (start + end) / 2;         int p1 = query(2 * node + 1, start, mid, l, r);         int p2 = query(2 * node + 2, mid + 1, end, l, r);          // bitwise AND operation result         return p1 & p2;     } };  int closestAND(vector<int> arr, int k) {     int n = arr.size();     SegmentTree st(arr);     int ans = INF;     for (int i = 0; i < n; i++) {         int l = i - 1, r = n - 1, mid;          // binary search implementation         while (r - l > 1) {             mid = (l + r) / 2;             if (st.query(i, mid) >= k)                 l = mid;             else                 r = mid;         }         if (l != i - 1)             ans = min(ans, abs(st.query(i, l) - k));         ans = min(ans, abs(k - st.query(i, r)));     }     return ans; }  int main() {     vector<int> arr = { 4, 7, 10 };     int k = 2;     cout << closestAND(arr, k); } 
Java
import java.util.Arrays;  // Segment Tree class to perform task optimally class SegmentTree {     int[] tree;     int n;      // Constructor     public SegmentTree(int[] arr)     {         n = arr.length;         tree = new int[4 * n];         build(arr, 0, 0, n - 1);     }      // Function to build the Segment Tree     public void build(int[] arr, int node, int start,                       int end)     {         if (start == end) {             tree[node] = arr[start];         }         else {             int mid = (start + end) / 2;             build(arr, 2 * node + 1, start, mid);             build(arr, 2 * node + 2, mid + 1, end);             tree[node]                 = tree[2 * node + 1] & tree[2 * node + 2];         }     }      // Overloading query function to be used recursively     public int query(int l, int r)     {         return query(0, 0, n - 1, l, r);     }      // query function to get bitwise AND of the range     public int query(int node, int start, int end, int l,                      int r)     {         if (r < start || end < l) {             return Integer                 .MAX_VALUE; // Return maximum value if                             // outside the range         }         if (l <= start && end <= r) {             return tree[node]; // Return node value if range                                // is completely within the                                // query range         }         int mid = (start + end) / 2;         int p1 = query(2 * node + 1, start, mid, l, r);         int p2 = query(2 * node + 2, mid + 1, end, l, r);         return p1             & p2; // Return bitwise AND of children nodes     } }  public class Main {     // Function to find the closest AND value     public static int closestAND(int[] arr, int k)     {         int n = arr.length;         SegmentTree st = new SegmentTree(arr);         int ans = Integer.MAX_VALUE;         for (int i = 0; i < n; i++) {             int l = i - 1, r = n - 1, mid;             // Binary search implementation             while (r - l > 1) {                 mid = (l + r) / 2;                 if (st.query(i, mid) >= k)                     l = mid;                 else                     r = mid;             }             if (l != i - 1)                 ans = Math.min(                     ans, Math.abs(st.query(i, l) - k));             ans = Math.min(ans,                            Math.abs(k - st.query(i, r)));         }         return ans;     }      public static void main(String[] args)     {         int[] arr = { 4, 7, 10 };         int k = 2;         System.out.println(closestAND(arr, k));     } } // This code is contributed by shivamgupta0987654321 
Python
import sys  class SegmentTree:     def __init__(self, arr):         self.n = len(arr)         self.tree = [0] * (4 * self.n)         self.build(arr, 0, 0, self.n-1)      def build(self, arr, node, start, end):         if start == end:             self.tree[node] = arr[start]         else:             mid = (start + end) // 2             self.build(arr, 2 * node + 1, start, mid)             self.build(arr, 2 * node + 2, mid + 1, end)             self.tree[node] = self.tree[2 * node + 1] & self.tree[2 * node + 2]      def query(self, l, r):         return self._query(0, 0, self.n - 1, l, r)      def _query(self, node, start, end, l, r):         if r < start or end < l:             return sys.maxsize         if l <= start and end <= r:             return self.tree[node]         mid = (start + end) // 2         p1 = self._query(2 * node + 1, start, mid, l, r)         p2 = self._query(2 * node + 2, mid + 1, end, l, r)         return p1 & p2  def closest_and(arr, k):     n = len(arr)     st = SegmentTree(arr)     ans = sys.maxsize     for i in range(n):         l, r = i - 1, n - 1         while r - l > 1:             mid = (l + r) // 2             if st.query(i, mid) >= k:                 l = mid             else:                 r = mid         if l != i - 1:             ans = min(ans, abs(st.query(i, l) - k))         ans = min(ans, abs(k - st.query(i, r)))     return ans  if __name__=="__main__":     arr = [4, 7, 10]     k = 2     print(closest_and(arr, k)) 
JavaScript
class SegmentTree {     constructor(arr) {         this.n = arr.length;         this.tree = new Array(4 * this.n).fill(0);         this.build(arr, 0, 0, this.n - 1);     }      build(arr, node, start, end) {         if (start === end) {             // Leaf node will have a single element             this.tree[node] = arr[start];         } else {             let mid = Math.floor((start + end) / 2);             // Recursively build the segment tree for the left child             this.build(arr, 2 * node + 1, start, mid);             // Recursively build the segment tree for the right child             this.build(arr, 2 * node + 2, mid + 1, end);             // Internal node will have the AND of both of its children             this.tree[node] = this.tree[2 * node + 1] & this.tree[2 * node + 2];         }     }      query(l, r) {         // Public method to start the query from the root of the segment tree         return this._query(0, 0, this.n - 1, l, r);     }      _query(node, start, end, l, r) {         if (r < start || end < l) {             // If the range is completely outside the node range, return a large number             return Number.MAX_SAFE_INTEGER;         }         if (l <= start && end <= r) {             // If the range is completely inside the node range, return the node value             return this.tree[node];         }         // If the range is partially inside and partially outside the node range         let mid = Math.floor((start + end) / 2);         // Query the left child         let p1 = this._query(2 * node + 1, start, mid, l, r);         // Query the right child         let p2 = this._query(2 * node + 2, mid + 1, end, l, r);         // Return the AND of both parts         return p1 & p2;     } }  function closestAnd(arr, k) {     let n = arr.length;     let st = new SegmentTree(arr);     let ans = Number.MAX_SAFE_INTEGER;     for (let i = 0; i < n; i++) {         let l = i - 1;         let r = n - 1;         while (r - l > 1) {             let mid = Math.floor((l + r) / 2);             // Perform a binary search to find the appropriate range             if (st.query(i, mid) >= k) {                 l = mid;             } else {                 r = mid;             }         }         if (l !== i - 1) {             // Update the answer if a valid range is found             ans = Math.min(ans, Math.abs(st.query(i, l) - k));         }         // Update the answer with the value from the current range         ans = Math.min(ans, Math.abs(k - st.query(i, r)));     }     // Return the closest AND result to k     return ans; }  // Example usage: let arr = [4, 7, 10]; let k = 2; console.log(closestAnd(arr, k));   // This code is contributed by shivamgupta0987654321 

Output
0

Time complexity: O(n*log(n)*log(n))

Auxiliary Space: O(n)



Next Article
Queries to calculate Bitwise AND of an array with updates
author
ankush_953
Improve
Article Tags :
  • Arrays
  • Bit Magic
  • DSA
  • Mathematical
  • Bitwise-AND
  • subarray
Practice Tags :
  • Arrays
  • Bit Magic
  • Mathematical

Similar Reads

  • Bitwise AND of all the elements of array
    Given an array, arr[] of N integers, the task is to find out the bitwise AND(&) of all the elements of the array. Examples: Input: arr[] = {1, 3, 5, 9, 11} Output: 1 Input: arr[] = {3, 7, 11, 19, 11} Output: 3 Approach: The idea is to traverse all the array elements and compute the bitwise AND f
    4 min read
  • Numbers that are bitwise AND of at least one non-empty sub-array
    Given an array 'arr', the task is to find all possible integers each of which is the bitwise AND of at least one non-empty sub-array of 'arr'. Examples: Input: arr = {11, 15, 7, 19} Output: [3, 19, 7, 11, 15] 3 = arr[2] AND arr[3] 19 = arr[3] 7 = arr[2] 11 = arr[0] 15 = arr[1] Input: arr = {5, 2, 8,
    12 min read
  • Bitwise OR of Bitwise AND of all subarrays of an array
    Given an array arr[] consisting of N positive integers, the task is to find the Bitwise OR of Bitwise AND of all subarrays of the given arrays. Examples: Input: arr[] = {1, 2, 3}Output: 3Explanation:The following are Bitwise AND of all possible subarrays are: {1}, Bitwise AND is 1.{1, 2}, Bitwise AN
    7 min read
  • Queries to calculate Bitwise AND of an array with updates
    Given an array arr[] consisting of N positive integers and a 2D array Q[][] consisting of queries of the type {i, val}, the task for each query is to replace arr[i] by val and calculate the Bitwise AND of the modified array. Examples: Input: arr[] = {1, 2, 3, 4, 5}, Q[][] = {{0, 2}, {3, 3}, {4, 2}}O
    15+ min read
  • Find bitwise OR of all possible sub-arrays
    Given an array A of size N where, [Tex]1\leq N \leq 10^{5} [/Tex]. The task is to find the OR of all possible sub-arrays of A and then the OR of all these results. Examples: Input : 1 4 6 Output : 7 All possible subarrays are {1}, {1, 4}, {4, 6} and {1, 4, 6} ORs of these subarrays are 1, 5, 6 and 7
    9 min read
  • Find bitwise AND (&) of all possible sub-arrays
    Given an array A of size N where [Tex]1\leq N \leq 10^{5} [/Tex]. The task is to find the AND of all possible sub-arrays of A and then the AND of all these results. Examples: Input : 1 2 3 Output : 0 All possible subarrays are {1}, {2}, {3}, {1, 2}, {2, 3} and {1, 2, 3} ANDs of these subarrays are 1
    8 min read
  • Closest value to K from an unsorted array
    Given an array arr[] consisting of N integers and an integer K, the task is to find the array element closest to K. If multiple closest values exist, then print the smallest one. Examples: Input: arr[]={4, 2, 8, 11, 7}, K = 6Output: 7Explanation:The absolute difference between 4 and 6 is |4 – 6| = 2
    5 min read
  • Count pairs from given array with Bitwise OR equal to K
    Given an array arr[] consisting of N positive integers and an integer K, the task is to count all pairs possible from the given array with Bitwise OR equal to K. Examples: Input: arr[] = {2, 38, 44, 29, 62}, K = 46Output: 2Explanation: Only the following two pairs are present in the array whose Bitw
    5 min read
  • Sum of bitwise AND of all subarrays
    Given an array consisting of N positive integers, find the sum of bit-wise and of all possible sub-arrays of the array. Examples: Input : arr[] = {1, 5, 8} Output : 15 Bit-wise AND of {1} = 1 Bit-wise AND of {1, 5} = 1 Bit-wise AND of {1, 5, 8} = 0 Bit-wise AND of {5} = 5 Bit-wise AND of {5, 8} = 0
    8 min read
  • Greatest contiguous sub-array of size K
    Given an array arr[] of integers and an integer K, the task is to find the greatest contiguous sub-array of size K. Sub-array X is said to be greater than sub-array Y if the first non-matching element in both the sub-arrays has a greater value in X than in Y. Examples: Input: arr[] = {1, 4, 3, 2, 5}
    6 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences