Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
    • Practice Coding Problems
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • DSA
  • Interview Problems on Tree
  • Practice Tree
  • MCQs on Tree
  • Tutorial on Tree
  • Types of Trees
  • Basic operations
  • Tree Traversal
  • Binary Tree
  • Complete Binary Tree
  • Ternary Tree
  • Binary Search Tree
  • Red-Black Tree
  • AVL Tree
  • Full Binary Tree
  • B-Tree
  • Advantages & Disadvantages
Open In App
Next Article:
Binary Tree to Binary Search Tree Conversion
Next article icon

Binary Tree to Binary Search Tree Conversion

Last Updated : 01 Oct, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report
Try it on GfG Practice
redirect icon

Given a Binary Tree, the task is to convert it to a Binary Search Tree. The conversion must be done in such a way that keeps the original structure of the Binary Tree. 

Examples

Input:

Binary-Tree-to-Binary-Search-Tree-Conversion

Output:

Binary-Tree-to-Binary-Search-Tree-Conversion-3


Explanation: The above Binary tree is converted to Binary Search tree by keeping the original structure of Binary Tree. 

Approach:

The idea to recursively traverse the binary tree and store the nodes in an array. Sort the array, and perform in-order traversal of the tree and update the value of each node to the corresponding value in tree.

Below is the implementation of the above approach:

C++
// C++ Program to convert binary  // tree to binary search tree. #include <bits/stdc++.h> using namespace std;  class Node { public:     int data;     Node* left, *right;     Node(int x) {         data = x;         left = nullptr;         right = nullptr;     } };  // Inorder traversal to store the nodes in a vector void inorder(Node* root, vector<int>& nodes) {     if (root == nullptr) {         return;     }     inorder(root->left, nodes);     nodes.push_back(root->data);     inorder(root->right, nodes); }  // Inorder traversal to convert tree // to BST. void constructBST(Node* root, vector<int> nodes, int& index) {     if (root == nullptr) return;          constructBST(root->left, nodes, index);          // Update root value     root->data = nodes[index++];          constructBST(root->right, nodes, index); }  // Function to convert a binary tree to a binary search tree Node* binaryTreeToBST(Node* root) {     vector<int> nodes;     inorder(root, nodes);          // sort the nodes     sort(nodes.begin(), nodes.end());          int index = 0;     constructBST(root, nodes, index);     return root; }  // Function to print the inorder traversal of a binary tree void printInorder(Node* root) {     if (root == NULL) {         return;     }     printInorder(root->left);     cout << root->data << " ";     printInorder(root->right); }  int main() {          // Creating the tree     //         10     //        /  \     //       2    7     //      / \     //     8   4     Node* root = new Node(10);        root->left = new Node(2);         root->right = new Node(7);        root->left->left = new Node(8);       root->left->right = new Node(4);          Node* ans = binaryTreeToBST(root);     printInorder(ans);      return 0; } 
Java
// Java Program to convert binary  // tree to binary search tree. import java.util.ArrayList; import java.util.Collections;  class Node {     int data;     Node left, right;      Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {          // Inorder traversal to store the nodes in a vector     static void inorder(Node root, ArrayList<Integer> nodes) {         if (root == null) {             return;         }         inorder(root.left, nodes);         nodes.add(root.data);         inorder(root.right, nodes);     }      // Inorder traversal to convert tree to BST.     static void constructBST(Node root,                               ArrayList<Integer> nodes, int[] index) {         if (root == null) return;          constructBST(root.left, nodes, index);          // Update root value         root.data = nodes.get(index[0]);         index[0]++;          constructBST(root.right, nodes, index);     }      // Function to convert a binary tree to a binary search tree     static Node binaryTreeToBST(Node root) {         ArrayList<Integer> nodes = new ArrayList<>();         inorder(root, nodes);          // sort the nodes         Collections.sort(nodes);          int[] index = {0};         constructBST(root, nodes, index);         return root;     }      // Function to print the inorder traversal of a binary tree     static void printInorder(Node root) {         if (root == null) {             return;         }         printInorder(root.left);         System.out.print(root.data + " ");         printInorder(root.right);     }      public static void main(String[] args) {                  // Creating the tree         //         10         //        /  \         //       2    7         //      / \         //     8   4         Node root = new Node(10);         root.left = new Node(2);         root.right = new Node(7);         root.left.left = new Node(8);         root.left.right = new Node(4);          Node ans = binaryTreeToBST(root);         printInorder(ans);     } } 
Python
# Python Program to convert binary  # tree to binary search tree. class Node:     def __init__(self, x):         self.data = x         self.left = None         self.right = None  # Inorder traversal to store the nodes in a vector def inorder(root, nodes):     if root is None:         return     inorder(root.left, nodes)     nodes.append(root.data)     inorder(root.right, nodes)  # Inorder traversal to convert tree to BST. def constructBst(root, nodes, index):     if root is None:         return     constructBst(root.left, nodes, index)          # Update root value     root.data = nodes[index[0]]     index[0] += 1          constructBst(root.right, nodes, index)  # Function to convert a binary tree to a binary search tree def binaryTreeToBst(root):     nodes = []     inorder(root, nodes)      # sort the nodes     nodes.sort()      index = [0]     constructBst(root, nodes, index)     return root  # Function to print the inorder traversal of a binary tree def printInorder(root):     if root is None:         return     printInorder(root.left)     print(root.data, end=" ")     printInorder(root.right)  if __name__ == "__main__":          # Creating the tree     #         10     #        /  \     #       2    7     #      / \     #     8   4     root = Node(10)     root.left = Node(2)     root.right = Node(7)     root.left.left = Node(8)     root.left.right = Node(4)      ans = binaryTreeToBst(root)     printInorder(ans) 
C#
// C# Program to convert binary  // tree to binary search tree. using System; using System.Collections.Generic;  class Node {     public int data;     public Node left, right;      public Node(int x) {         data = x;         left = null;         right = null;     } }  class GfG {          // Inorder traversal to store the nodes in a list     static void Inorder(Node root, List<int> nodes) {         if (root == null) {             return;         }         Inorder(root.left, nodes);         nodes.Add(root.data);         Inorder(root.right, nodes);     }      // Inorder traversal to convert tree to BST.     static void ConstructBST(Node root,                               List<int> nodes, ref int index) {         if (root == null) return;          ConstructBST(root.left, nodes, ref index);          // Update root value         root.data = nodes[index];         index++;          ConstructBST(root.right, nodes, ref index);     }      // Function to convert a binary tree to a binary search tree     static Node BinaryTreeToBST(Node root) {         List<int> nodes = new List<int>();         Inorder(root, nodes);          // sort the nodes         nodes.Sort();          int index = 0;         ConstructBST(root, nodes, ref index);         return root;     }      // Function to print the inorder traversal of a binary tree     static void PrintInorder(Node root) {         if (root == null) {             return;         }         PrintInorder(root.left);         Console.Write(root.data + " ");         PrintInorder(root.right);     }      static void Main() {                // Creating the tree         //         10         //        /  \         //       2    7         //      / \         //     8   4         Node root = new Node(10);         root.left = new Node(2);         root.right = new Node(7);         root.left.left = new Node(8);         root.left.right = new Node(4);          Node ans = BinaryTreeToBST(root);         PrintInorder(ans);     } } 
JavaScript
// JavaScript Program to convert binary  // tree to binary search tree. class Node {     constructor(x) {         this.data = x;         this.left = null;         this.right = null;     } }  // Inorder traversal to store the nodes in a vector function inorderTrav(root, nodes) {     if (root === null) {         return;     }     inorderTrav(root.left, nodes);     nodes.push(root.data);     inorderTrav(root.right, nodes); }  // Inorder traversal to convert tree to BST. function constructBST(root, nodes, index) {     if (root === null) return;      constructBST(root.left, nodes, index);      // Update root value     root.data = nodes[index[0]];     index[0]++;      constructBST(root.right, nodes, index); }  // Function to convert a binary tree to a binary search tree function binaryTreeToBST(root) {     let nodes = [];     inorderTrav(root, nodes);      // sort the nodes     nodes.sort((a, b) => a - b);      let index = [0];     constructBST(root, nodes, index);     return root; }  // Function to print the inorder traversal of a binary tree function printInorder(root) {     if (root === null) {         return;     }     printInorder(root.left);     console.log(root.data);     printInorder(root.right); }  // Creating the tree //         10 //        /  \ //       2    7 //      / \ //     8   4 let root = new Node(10); root.left = new Node(2); root.right = new Node(7); root.left.left = new Node(8); root.left.right = new Node(4);  let ans = binaryTreeToBST(root); printInorder(ans); 

Output
2 4 7 8 10 

Time Complexity: O(nlogn), for sorting the array.
Auxiliary Space: O(n), for storing nodes in an array.

Related article:

  • Binary Tree to Binary Search Tree Conversion using STL set

Next Article
Binary Tree to Binary Search Tree Conversion

K

kartik
Improve
Article Tags :
  • Tree
  • Binary Search Tree
  • DSA
  • Amazon
Practice Tags :
  • Amazon
  • Binary Search Tree
  • Tree

Similar Reads

    Binary Search Tree
    A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the node’s value. All nodes in the right subtree of a node contain values s
    4 min read
    Introduction to Binary Search Tree
    Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the
    3 min read
    Applications of BST
    Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node
    3 min read
    Applications, Advantages and Disadvantages of Binary Search Tree
    A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p
    2 min read
    Insertion in Binary Search Tree (BST)
    Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo
    15 min read
    Searching in Binary Search Tree (BST)
    Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp
    7 min read
    Deletion in Binary Search Tree (BST)
    Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w
    10 min read
    Binary Search Tree (BST) Traversals – Inorder, Preorder, Post Order
    Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1
    10 min read
    Balance a Binary Search Tree
    Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u
    10 min read
    Self-Balancing Binary Search Trees
    Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average
    4 min read
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences