Insert Operation in B-Tree
Last Updated : 14 Jan, 2025
In this post, we'll discuss the insert() operation in a B-Tree. A new key is always inserted into a leaf node. To insert a key k, we start from the root and traverse down the tree until we reach the appropriate leaf node. Once there, the key is added to the leaf.
Unlike Binary Search Trees (BSTs), nodes in a B-Tree have a predefined range for the number of keys they can hold. Therefore, before inserting a key, we ensure the node has enough space. If the node is full, an operation called splitChild() is performed to create space by splitting the node.
Insertion Operation
To insert a new key, we go down from root to leaf. Before traversing down to a node, we first check if the node is full. If the node is full, we split it to create space. Following is the complete algorithm.
Insertion Algorithm
1: procedure B-Tree-Insert (Node x, Key k)
2: find i such that x:keys[i] > k or i >=numkeys(x)
3: if x is a leaf then
4: Insert k into x.keys at i
5: else
6: if x:child[i] is full then
7: Split x:child[i]
8: if k > x:key[i] then
9: i = i + 1
10: end if
11: end if
12: B-Tree-Insert(x:child[i]; k)
13: end if
14: end procedure
- The algorithm starts with a node
x
and a key k
to insert.
- Find the position
i
in the node x
where k
should be inserted:- Locate the first key in
x
greater than k
, or move to the end if no such key exists.
- If
x
is a leaf node, directly insert k
at position i
in sorted order.
- If
x
is not a leaf node, proceed to the child node at position i
:- Check if the child node is full (has the maximum number of keys allowed).
- If the child is full:
- Split the child node into two nodes.
- Move the middle key of the child node up to the parent node (
x
). - Adjust the position
i
if k
is greater than the promoted key.
- Recursively call the
B-Tree-Insert
procedure on the appropriate child node to continue the insertion.
- The process ends when
k
is successfully inserted into a leaf node, ensuring the tree remains balanced and within its key limit.
Example
Below is the code implementation of B-Tree Insertion:
C++ // C++ program for B-Tree insertion #include<iostream> using namespace std; // A BTree node class BTreeNode { int *keys; // An array of keys int t; // Minimum degree (defines the range for number of keys) BTreeNode **C; // An array of child pointers int n; // Current number of keys bool leaf; // Is true when node is leaf. Otherwise false public: BTreeNode(int _t, bool _leaf); // Constructor // A utility function to insert a new key in the subtree rooted with // this node. The assumption is, the node must be non-full when this // function is called void insertNonFull(int k); // A utility function to split the child y of this node. i is index of y in // child array C[]. The Child y must be full when this function is called void splitChild(int i, BTreeNode *y); // A function to traverse all nodes in a subtree rooted with this node void traverse(); // A function to search a key in the subtree rooted with this node. BTreeNode *search(int k); // returns NULL if k is not present. // Make BTree friend of this so that we can access private members of this // class in BTree functions friend class BTree; }; // A BTree class BTree { BTreeNode *root; // Pointer to root node int t; // Minimum degree public: // Constructor (Initializes tree as empty) BTree(int _t) { root = NULL; t = _t; } // function to traverse the tree void traverse() { if (root != NULL) root->traverse(); } // function to search a key in this tree BTreeNode* search(int k) { return (root == NULL)? NULL : root->search(k); } // The main function that inserts a new key in this B-Tree void insert(int k); }; // Constructor for BTreeNode class BTreeNode::BTreeNode(int t1, bool leaf1) { // Copy the given minimum degree and leaf property t = t1; leaf = leaf1; // Allocate memory for maximum number of possible keys // and child pointers keys = new int[2*t-1]; C = new BTreeNode *[2*t]; // Initialize the number of keys as 0 n = 0; } // Function to traverse all nodes in a subtree rooted with this node void BTreeNode::traverse() { // There are n keys and n+1 children, traverse through n keys // and first n children int i; for (i = 0; i < n; i++) { // If this is not leaf, then before printing key[i], // traverse the subtree rooted with child C[i]. if (leaf == false) C[i]->traverse(); cout << " " << keys[i]; } // Print the subtree rooted with last child if (leaf == false) C[i]->traverse(); } // Function to search key k in subtree rooted with this node BTreeNode *BTreeNode::search(int k) { // Find the first key greater than or equal to k int i = 0; while (i < n && k > keys[i]) i++; // If the found key is equal to k, return this node if (keys[i] == k) return this; // If key is not found here and this is a leaf node if (leaf == true) return NULL; // Go to the appropriate child return C[i]->search(k); } // The main function that inserts a new key in this B-Tree void BTree::insert(int k) { // If tree is empty if (root == NULL) { // Allocate memory for root root = new BTreeNode(t, true); root->keys[0] = k; // Insert key root->n = 1; // Update number of keys in root } else // If tree is not empty { // If root is full, then tree grows in height if (root->n == 2*t-1) { // Allocate memory for new root BTreeNode *s = new BTreeNode(t, false); // Make old root as child of new root s->C[0] = root; // Split the old root and move 1 key to the new root s->splitChild(0, root); // New root has two children now. Decide which of the // two children is going to have new key int i = 0; if (s->keys[0] < k) i++; s->C[i]->insertNonFull(k); // Change root root = s; } else // If root is not full, call insertNonFull for root root->insertNonFull(k); } } // A utility function to insert a new key in this node // The assumption is, the node must be non-full when this // function is called void BTreeNode::insertNonFull(int k) { // Initialize index as index of rightmost element int i = n-1; // If this is a leaf node if (leaf == true) { // The following loop does two things // a) Finds the location of new key to be inserted // b) Moves all greater keys to one place ahead while (i >= 0 && keys[i] > k) { keys[i+1] = keys[i]; i--; } // Insert the new key at found location keys[i+1] = k; n = n+1; } else // If this node is not leaf { // Find the child which is going to have the new key while (i >= 0 && keys[i] > k) i--; // See if the found child is full if (C[i+1]->n == 2*t-1) { // If the child is full, then split it splitChild(i+1, C[i+1]); // After split, the middle key of C[i] goes up and // C[i] is splitted into two. See which of the two // is going to have the new key if (keys[i+1] < k) i++; } C[i+1]->insertNonFull(k); } } // A utility function to split the child y of this node // Note that y must be full when this function is called void BTreeNode::splitChild(int i, BTreeNode *y) { // Create a new node which is going to store (t-1) keys // of y BTreeNode *z = new BTreeNode(y->t, y->leaf); z->n = t - 1; // Copy the last (t-1) keys of y to z for (int j = 0; j < t-1; j++) z->keys[j] = y->keys[j+t]; // Copy the last t children of y to z if (y->leaf == false) { for (int j = 0; j < t; j++) z->C[j] = y->C[j+t]; } // Reduce the number of keys in y y->n = t - 1; // Since this node is going to have a new child, // create space of new child for (int j = n; j >= i+1; j--) C[j+1] = C[j]; // Link the new child to this node C[i+1] = z; // A key of y will move to this node. Find the location of // new key and move all greater keys one space ahead for (int j = n-1; j >= i; j--) keys[j+1] = keys[j]; // Copy the middle key of y to this node keys[i] = y->keys[t-1]; // Increment count of keys in this node n = n + 1; } // Driver program to test above functions int main() { BTree t(3); // A B-Tree with minimum degree 3 t.insert(10); t.insert(20); t.insert(5); t.insert(6); t.insert(12); t.insert(30); t.insert(7); t.insert(17); cout << "Traversal of the constructed tree is "; t.traverse(); int k = 6; (t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present"; k = 15; (t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present"; return 0; }
Java class BTreeNode { int[] keys; int t; BTreeNode[] C; int n; boolean leaf; public BTreeNode(int t, boolean leaf) { this.keys = new int[2 * t - 1]; this.t = t; this.C = new BTreeNode[2 * t]; this.n = 0; this.leaf = leaf; } void insertNonFull(int k) { int i = n - 1; if (leaf) { while (i >= 0 && keys[i] > k) { keys[i + 1] = keys[i]; i--; } keys[i + 1] = k; n++; } else { while (i >= 0 && keys[i] > k) { i--; } if (C[i + 1].n == 2 * t - 1) { splitChild(i + 1, C[i + 1]); if (keys[i + 1] < k) { i++; } } C[i + 1].insertNonFull(k); } } void splitChild(int i, BTreeNode y) { BTreeNode z = new BTreeNode(y.t, y.leaf); z.n = t - 1; for (int j = 0; j < t - 1; j++) { z.keys[j] = y.keys[j + t]; } if (!y.leaf) { for (int j = 0; j < t; j++) { z.C[j] = y.C[j + t]; } } y.n = t - 1; for (int j = n; j > i; j--) { C[j + 1] = C[j]; } C[i + 1] = z; for (int j = n - 1; j >= i; j--) { keys[j + 1] = keys[j]; } keys[i] = y.keys[t - 1]; n++; } void traverse() { for (int i = 0; i < n; i++) { if (!leaf) { C[i].traverse(); } System.out.print(" " + keys[i]); } if (!leaf) { C[n].traverse(); } } BTreeNode search(int k) { int i = 0; while (i < n && k > keys[i]) { i++; } if (i < n && k == keys[i]) { return this; } if (leaf) { return null; } return C[i].search(k); } } class BTree { BTreeNode root; int t; public BTree(int t) { this.root = null; this.t = t; } void traverse() { if (root != null) { root.traverse(); } } BTreeNode search(int k) { return root == null ? null : root.search(k); } void insert(int k) { if (root == null) { root = new BTreeNode(t, true); root.keys[0] = k; root.n = 1; } else { if (root.n == 2 * t - 1) { BTreeNode s = new BTreeNode(t, false); s.C[0] = root; s.splitChild(0, root); int i = 0; if (s.keys[0] < k) { i++; } s.C[i].insertNonFull(k); root = s; } else { root.insertNonFull(k); } } } } class Main { public static void main(String[] args) { BTree t = new BTree(3); t.insert(10); t.insert(20); t.insert(5); t.insert(6); t.insert(12); t.insert(30); t.insert(7); t.insert(17); System.out.print("Traversal of the constructed tree is "); t.traverse(); System.out.println(); int key = 6; if (t.search(key) != null) { System.out.println(" | Present"); } else { System.out.println(" | Not Present"); } key = 15; if (t.search(key) != null) { System.out.println(" | Present"); } else { System.out.println(" | Not Present"); } } }
Python # Python program for B-Tree insertion class BTreeNode: def __init__(self, t, leaf): self.keys = [None] * (2 * t - 1) # An array of keys self.t = t # Minimum degree (defines the range for number of keys) self.C = [None] * (2 * t) # An array of child pointers self.n = 0 # Current number of keys self.leaf = leaf # Is true when node is leaf. Otherwise false # A utility function to insert a new key in the subtree rooted with # this node. The assumption is, the node must be non-full when this # function is called def insertNonFull(self, k): i = self.n - 1 if self.leaf: while i >= 0 and self.keys[i] > k: self.keys[i + 1] = self.keys[i] i -= 1 self.keys[i + 1] = k self.n += 1 else: while i >= 0 and self.keys[i] > k: i -= 1 if self.C[i + 1].n == 2 * self.t - 1: self.splitChild(i + 1, self.C[i + 1]) if self.keys[i + 1] < k: i += 1 self.C[i + 1].insertNonFull(k) # A utility function to split the child y of this node. i is index of y in # child array C[]. The Child y must be full when this function is called def splitChild(self, i, y): z = BTreeNode(y.t, y.leaf) z.n = self.t - 1 for j in range(self.t - 1): z.keys[j] = y.keys[j + self.t] if not y.leaf: for j in range(self.t): z.C[j] = y.C[j + self.t] y.n = self.t - 1 for j in range(self.n, i, -1): self.C[j + 1] = self.C[j] self.C[i + 1] = z for j in range(self.n - 1, i - 1, -1): self.keys[j + 1] = self.keys[j] self.keys[i] = y.keys[self.t - 1] self.n += 1 # A function to traverse all nodes in a subtree rooted with this node def traverse(self): for i in range(self.n): if not self.leaf: self.C[i].traverse() print(self.keys[i], end=' ') if not self.leaf: self.C[i + 1].traverse() # A function to search a key in the subtree rooted with this node. def search(self, k): i = 0 while i < self.n and k > self.keys[i]: i += 1 if i < self.n and k == self.keys[i]: return self if self.leaf: return None return self.C[i].search(k) # A BTree class BTree: def __init__(self, t): self.root = None # Pointer to root node self.t = t # Minimum degree # function to traverse the tree def traverse(self): if self.root != None: self.root.traverse() # function to search a key in this tree def search(self, k): return None if self.root == None else self.root.search(k) # The main function that inserts a new key in this B-Tree def insert(self, k): if self.root == None: self.root = BTreeNode(self.t, True) self.root.keys[0] = k # Insert key self.root.n = 1 else: if self.root.n == 2 * self.t - 1: s = BTreeNode(self.t, False) s.C[0] = self.root s.splitChild(0, self.root) i = 0 if s.keys[0] < k: i += 1 s.C[i].insertNonFull(k) self.root = s else: self.root.insertNonFull(k) # Driver program to test above functions if __name__ == '__main__': t = BTree(3) # A B-Tree with minimum degree 3 t.insert(10) t.insert(20) t.insert(5) t.insert(6) t.insert(12) t.insert(30) t.insert(7) t.insert(17) print("Traversal of the constructed tree is ", end = ' ') t.traverse() print() k = 6 if t.search(k) != None: print("Present") else: print("Not Present") k = 15 if t.search(k) != None: print("Present") else: print("Not Present")
C# using System; // Class representing a B-tree node public class BTreeNode { public int[] keys; // An array of keys public BTreeNode[] C; // An array of child pointers public int n; // Current number of keys public bool leaf; // Indicates whether the node is a leaf public int t; // Minimum degree (defines the range for the number of keys) // Constructor to initialize a B-tree node public BTreeNode(int t, bool leaf) { this.t = t; this.leaf = leaf; this.keys = new int[2 * t - 1]; this.C = new BTreeNode[2 * t]; this.n = 0; } // Function to insert a new key in a non-full node public void InsertNonFull(int k) { int i = n - 1; if (leaf) { // Insert key into a leaf node while (i >= 0 && keys[i] > k) { keys[i + 1] = keys[i]; i--; } keys[i + 1] = k; n++; } else { // Insert key into a non-leaf node while (i >= 0 && keys[i] > k) { i--; } if (C[i + 1].n == 2 * t - 1) { // Split the child if it is full SplitChild(i + 1, C[i + 1]); if (keys[i + 1] < k) { i++; } } C[i + 1].InsertNonFull(k); } } // Function to split a full child node public void SplitChild(int i, BTreeNode y) { BTreeNode z = new BTreeNode(y.t, y.leaf); z.n = t - 1; // Copy the second half of keys from y to z for (int j = 0; j < t - 1; j++) { z.keys[j] = y.keys[j + t]; } // Copy the second half of child pointers from y to z if y is not a leaf if (!y.leaf) { for (int j = 0; j < t; j++) { z.C[j] = y.C[j + t]; } } y.n = t - 1; // Rearrange keys and child pointers in the parent node for (int j = n; j > i; j--) { C[j + 1] = C[j]; } C[i + 1] = z; for (int j = n - 1; j >= i; j--) { keys[j + 1] = keys[j]; } keys[i] = y.keys[t - 1]; n++; } // Function to traverse all nodes in a subtree rooted with this node public void Traverse() { int i; for (i = 0; i < n; i++) { if (!leaf) { C[i].Traverse(); } Console.Write(keys[i] + " "); } if (!leaf) { C[i].Traverse(); } } // Function to search a key in the subtree rooted with this node public BTreeNode Search(int k) { int i = 0; while (i < n && k > keys[i]) { i++; } if (i < n && k == keys[i]) { return this; } return leaf ? null : C[i].Search(k); } } // Class representing a B-tree public class BTree { public BTreeNode root; // Pointer to root node public int t; // Minimum degree // Constructor to initialize a B-tree public BTree(int t) { this.t = t; root = null; } // Function to traverse the tree public void Traverse() { if (root != null) { root.Traverse(); } } // Function to search a key in this tree public BTreeNode Search(int k) { return root == null ? null : root.Search(k); } // Main function to insert a new key in this B-tree public void Insert(int k) { if (root == null) { // If the tree is empty, create a new root root = new BTreeNode(t, true); root.keys[0] = k; root.n = 1; } else { if (root.n == 2 * t - 1) { // If the root is full, create a new root and split the old root BTreeNode s = new BTreeNode(t, false); s.C[0] = root; s.SplitChild(0, root); int i = 0; if (s.keys[0] < k) { i++; } s.C[i].InsertNonFull(k); root = s; } else { // If the root is not full, insert into the root root.InsertNonFull(k); } } } } class Program { static void Main() { BTree t = new BTree(3); // A B-tree with a minimum degree of 3 t.Insert(10); t.Insert(20); t.Insert(5); t.Insert(6); t.Insert(12); t.Insert(30); t.Insert(7); t.Insert(17); Console.Write("Traversal of the constructed tree is "); t.Traverse(); Console.WriteLine(); int k = 6; Console.WriteLine(t.Search(k) != null ? "Present" : "Not Present"); k = 15; Console.WriteLine(t.Search(k) != null ? "Present" : "Not Present"); } }
JavaScript class BTreeNode { constructor(t, leaf) { this.keys = Array(2 * t - 1).fill(null); // An array of keys this.t = t; // Minimum degree (defines the range for the number of keys) this.C = Array(2 * t).fill(null); // An array of child pointers this.n = 0; // Current number of keys this.leaf = leaf; // Is true when the node is a leaf, otherwise false } // A utility function to insert a new key in the subtree rooted with // this node. The assumption is that the node must be non-full when this // function is called insertNonFull(k) { let i = this.n - 1; if (this.leaf) { while (i >= 0 && this.keys[i] > k) { this.keys[i + 1] = this.keys[i]; i--; } this.keys[i + 1] = k; this.n++; } else { while (i >= 0 && this.keys[i] > k) { i--; } if (this.C[i + 1].n === 2 * this.t - 1) { this.splitChild(i + 1, this.C[i + 1]); if (this.keys[i + 1] < k) { i++; } } this.C[i + 1].insertNonFull(k); } } // A utility function to split the child y of this node. i is the index of y in // the child array C[]. The Child y must be full when this function is called splitChild(i, y) { const z = new BTreeNode(y.t, y.leaf); z.n = this.t - 1; for (let j = 0; j < this.t - 1; j++) { z.keys[j] = y.keys[j + this.t]; } if (!y.leaf) { for (let j = 0; j < this.t; j++) { z.C[j] = y.C[j + this.t]; } } y.n = this.t - 1; for (let j = this.n; j > i; j--) { this.C[j + 1] = this.C[j]; } this.C[i + 1] = z; for (let j = this.n - 1; j >= i; j--) { this.keys[j + 1] = this.keys[j]; } this.keys[i] = y.keys[this.t - 1]; this.n++; } // A function to traverse all nodes in a subtree rooted with this node traverse() { for (let i = 0; i < this.n; i++) { if (!this.leaf) { this.C[i].traverse(); } console.log(this.keys[i]); } if (!this.leaf) { this.C[this.n].traverse(); } } // A function to search a key in the subtree rooted with this node search(k) { let i = 0; while (i < this.n && k > this.keys[i]) { i++; } if (i < this.n && k === this.keys[i]) { return this; } if (this.leaf) { return null; } return this.C[i].search(k); } } // A BTree class BTree { constructor(t) { this.root = null; // Pointer to the root node this.t = t; // Minimum degree } // Function to traverse the tree traverse() { if (this.root !== null) { this.root.traverse(); } } // Function to search a key in this tree search(k) { return this.root === null ? null : this.root.search(k); } // The main function that inserts a new key in this B-Tree insert(k) { if (this.root === null) { this.root = new BTreeNode(this.t, true); this.root.keys[0] = k; // Insert key this.root.n = 1; } else { if (this.root.n === 2 * this.t - 1) { const s = new BTreeNode(this.t, false); s.C[0] = this.root; s.splitChild(0, this.root); let i = 0; if (s.keys[0] < k) { i++; } s.C[i].insertNonFull(k); this.root = s; } else { this.root.insertNonFull(k); } } } } // Driver program to test above functions const t = new BTree(3); // A B-Tree with a minimum degree of 3 t.insert(10); t.insert(20); t.insert(5); t.insert(6); t.insert(12); t.insert(30); t.insert(7); t.insert(17); console.log("Traversal of the constructed tree is "); t.traverse(); console.log(); let key = 6; if (t.search(key) !== null) { console.log("Present"); } else { console.log("Not Present"); } key = 15; if (t.search(key) !== null) { console.log("Present"); } else { console.log("Not Present"); }
OutputTraversal of the constructed tree is 5 6 7 10 12 17 20 30 Present Not Present
Conclusion
The insert operation in a B-Tree ensures efficient and balanced data storage by maintaining the structural properties of the tree. By carefully splitting nodes when they become full and promoting keys to higher levels, the tree remains balanced, with a height that grows logarithmically relative to the number of keys. This guarantees that insertion operations are fast, even for large datasets, making B-Trees an essential data structure for databases and file systems where efficient insertion and retrieval are critical.
Similar Reads
Introduction of B-Tree A B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Insert Operation in B-Tree In this post, we'll discuss the insert() operation in a B-Tree. A new key is always inserted into a leaf node. To insert a key k, we start from the root and traverse down the tree until we reach the appropriate leaf node. Once there, the key is added to the leaf.Unlike Binary Search Trees (BSTs), no
15+ min read
What is B-Tree? | B-Tree meaning A B-tree is a self-balancing tree where all the leaf nodes are at the same level which allows for efficient searching, insertion and deletion of records. Because of all the leaf nodes being on the same level, the access time of data is fixed regardless of the size of the data set. Characteristics of
3 min read
Need for B-Trees in Databases and File Systems A B-Tree is a self-balancing tree data structure widely used in database and file systems for its efficiency in storing and retrieving massive quantities of data. B-Trees are great for handling enormous datasets that are too big to store fully in memory since they are optimized to operate with stora
5 min read
B-Tree Insert without aggressive splitting B-Tree Insert without aggressive splittingThis algorithm for insertion takes an entry, finds the leaf node where it belongs, and inserts it there. We recursively insert the entry by calling the insert algorithm on the appropriate child node. This procedure results in going down to the leaf node wher
15+ min read
Delete Operation in B-Tree A B Tree is a type of data structure commonly known as a Balanced Tree that stores multiple data items very easily. B Trees are one of the most useful data structures that provide ordered access to the data in the database. In this article, we will see the delete operation in the B-Tree. B-Trees are
15+ min read
Introduction of B+ Tree B + Tree is a variation of the B-tree data structure. In a B + tree, data pointers are stored only at the leaf nodes of the tree. In this tree, structure of a leaf node differs from the structure of internal nodes. The leaf nodes have an entry for every value of the search field, along with a data p
8 min read
Insertion in a B+ tree Prerequisite: Introduction of B+ treesIn this article, we will discuss that how to insert a node in B+ Tree. During insertion following properties of B+ Tree must be followed:Â Each node except root can have a maximum of M children and at least ceil(M/2) children.Each node can contain a maximum of M
15+ min read
What is B+ Tree | B+ Tree meaning The B+ tree is similar to the B-tree data structure in that it is a tree structure with a fixed number of keys per node, and it is balanced so that all leaf nodes are at the same level. However, in a B+ tree, all keys are stored in the leaf nodes, while the internal nodes only contain pointers to ot
5 min read
Difference between B tree and B+ tree B-Tree: B-Tree is known as a self-balancing tree as its nodes are sorted in the inorder traversal. In B-tree, a node can have more than two children. B-tree has a height of logM N (Where âMâ is the order of tree and N is the number of nodes). And the height is adjusted automatically at each update.
3 min read