Skip to content
geeksforgeeks
  • Courses
    • DSA to Development
    • Get IBM Certification
    • Newly Launched!
      • Master Django Framework
      • Become AWS Certified
    • For Working Professionals
      • Interview 101: DSA & System Design
      • Data Science Training Program
      • JAVA Backend Development (Live)
      • DevOps Engineering (LIVE)
      • Data Structures & Algorithms in Python
    • For Students
      • Placement Preparation Course
      • Data Science (Live)
      • Data Structure & Algorithm-Self Paced (C++/JAVA)
      • Master Competitive Programming (Live)
      • Full Stack Development with React & Node JS (Live)
    • Full Stack Development
    • Data Science Program
    • All Courses
  • Tutorials
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • School Learning
  • Practice
    • Build your AI Agent
    • GfG 160
    • Problem of the Day
    • Practice Coding Problems
    • GfG SDE Sheet
  • Contests
    • Accenture Hackathon (Ending Soon!)
    • GfG Weekly [Rated Contest]
    • Job-A-Thon Hiring Challenge
    • All Contests and Events
  • DSA
  • Algorithms
  • Analysis of Algorithms
  • Sorting
  • Searching
  • Greedy
  • Recursion
  • Backtracking
  • Dynamic Programming
  • Divide and Conquer
  • Geometric Algorithms
  • Mathematical Algorithms
  • Pattern Searching
  • Bitwise Algorithms
  • Branch & Bound
  • Randomized Algorithms
Open In App
Next Article:
How to Analyse Loops for Complexity Analysis of Algorithms
Next article icon

Asymptotic Analysis

Last Updated : 07 Apr, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two algorithms for a task, how do we find out which one is better? 

One naive way of doing this is – to implement both the algorithms and run the two programs on your computer for different inputs and see which one takes less time. There are many problems with this approach for the analysis of algorithms. 

  • It might be possible that for some inputs, the first algorithm performs better than the second. And for some inputs second performs better. 
  • It might also be possible that for some inputs, the first algorithm performs better on one machine, and the second works better on another machine for some other inputs.

Asymptotic Analysis is the big idea that handles the above issues in analyzing algorithms. In Asymptotic Analysis, we evaluate the performance of an algorithm in terms of input size (we don’t measure the actual running time). We calculate, order of growth of time taken (or space) by an algorithm in terms of input size. For example linear search grows linearly and Binary Search grows logarithmically in terms of input size.

For example, let us consider the search problem (searching a given item) in a sorted array. 

The solution to above search problem includes: 

  • Linear Search (order of growth is linear) 
  • Binary Search (order of growth is logarithmic). 

To understand how Asymptotic Analysis solves the problems mentioned above in analyzing algorithms, 

  • let us say: 
    • We run the Linear Search on computer A and 
    • Binary Search on computer B and 
  • For small values of input array size n, computer A may take less time. 
  • But, after a certain value of input array size, the Binary Search will definitely start taking less time compared to the Linear Search even though the Binary Search is being run on a slow machine.  Why? After certain value, the machine specific factors would not matter as the value of input would become large.
  • The reason is the order of growth of Binary Search with respect to input size is logarithmic while the order of growth of Linear Search is linear. 
  • So the machine-dependent constants can always be ignored after a certain value of input size. 
  • Let’s say the constant for machine A is 0.2 and the constant for B is 1000 which means that A is 5000 times more powerful than B. 
Input Size Running time on A Running time on B
10 2 sec ~ 1 h 
100 20 sec ~ 1.8 h
10^6  ~ 55.5 h ~ 5.5 h
10^9 ~ 6.3 years  ~ 8.3 h

Running times for this example: 

  • Linear Search running time in seconds on A: 0.2 * n 
  • Binary Search running time in seconds on B: 1000*log(n) 

Does Asymptotic Analysis always work? 

Asymptotic Analysis is not perfect, but that’s the best way available for analyzing algorithms. For example, say there are two sorting algorithms that take 1000nLogn and 2nLogn time respectively on a machine. Both of these algorithms are asymptotically the same (order of growth is nLogn). So, With Asymptotic Analysis, we can’t judge which one is better as we ignore constants in Asymptotic Analysis. For example, asymptotically Heap Sort is better than Quick Sort, but Quick Sort takes less time in practice.

Also, in Asymptotic analysis, we always talk about input sizes larger than a constant value. It might be possible that those large inputs are never given to your software and an asymptotically slower algorithm always performs better for your particular situation. So, you may end up choosing an algorithm that is Asymptotically slower but faster for your software.


Next Article
How to Analyse Loops for Complexity Analysis of Algorithms
author
kartik
Improve
Article Tags :
  • Algorithms
  • Analysis of Algorithms
  • DSA
  • Complexity-analysis
Practice Tags :
  • Algorithms

Similar Reads

  • Analysis of Algorithms
    Analysis of Algorithms is a fundamental aspect of computer science that involves evaluating performance of algorithms and programs. Efficiency is measured in terms of time and space. Basics on Analysis of Algorithms:Why is Analysis Important?Order of GrowthAsymptotic Analysis Worst, Average and Best
    1 min read
  • Complete Guide On Complexity Analysis - Data Structure and Algorithms Tutorial
    Complexity analysis is defined as a technique to characterise the time taken by an algorithm with respect to input size (independent from the machine, language and compiler). It is used for evaluating the variations of execution time on different algorithms. What is the need for Complexity Analysis?
    15+ min read
  • Why is Analysis of Algorithm important?
    Why is Performance of Algorithms Important ? There are many important things that should be taken care of, like user-friendliness, modularity, security, maintainability, etc. Why worry about performance? The answer to this is simple, we can have all the above things only if we have performance. So p
    2 min read
  • Types of Asymptotic Notations in Complexity Analysis of Algorithms
    We have discussed Asymptotic Analysis, and Worst, Average, and Best Cases of Algorithms. The main idea of asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants and don't require algorithms to be implemented and time taken by programs
    8 min read
  • Worst, Average and Best Case Analysis of Algorithms
    In the previous post, we discussed how Asymptotic analysis overcomes the problems of the naive way of analyzing algorithms. Now let us learn about What is Worst, Average, and Best cases of an algorithm: 1. Worst Case Analysis (Mostly used) In the worst-case analysis, we calculate the upper bound on
    10 min read
  • Asymptotic Analysis
    Given two algorithms for a task, how do we find out which one is better? One naive way of doing this is - to implement both the algorithms and run the two programs on your computer for different inputs and see which one takes less time. There are many problems with this approach for the analysis of
    3 min read
  • How to Analyse Loops for Complexity Analysis of Algorithms
    We have discussed Asymptotic Analysis, Worst, Average and Best Cases and Asymptotic Notations in previous posts. In this post, an analysis of iterative programs with simple examples is discussed. The analysis of loops for the complexity analysis of algorithms involves finding the number of operation
    15+ min read
  • Sample Practice Problems on Complexity Analysis of Algorithms
    Prerequisite: Asymptotic Analysis, Worst, Average and Best Cases, Asymptotic Notations, Analysis of loops. Problem 1: Find the complexity of the below recurrence: { 3T(n-1), if n>0,T(n) = { 1, otherwise Solution: Let us solve using substitution. T(n) = 3T(n-1) = 3(3T(n-2)) = 32T(n-2) = 33T(n-3) .
    15 min read
  • Basics on Analysis of Algorithms

    • Why is Analysis of Algorithm important?
      Why is Performance of Algorithms Important ? There are many important things that should be taken care of, like user-friendliness, modularity, security, maintainability, etc. Why worry about performance? The answer to this is simple, we can have all the above things only if we have performance. So p
      2 min read

    • Asymptotic Analysis
      Given two algorithms for a task, how do we find out which one is better? One naive way of doing this is - to implement both the algorithms and run the two programs on your computer for different inputs and see which one takes less time. There are many problems with this approach for the analysis of
      3 min read

    • Worst, Average and Best Case Analysis of Algorithms
      In the previous post, we discussed how Asymptotic analysis overcomes the problems of the naive way of analyzing algorithms. Now let us learn about What is Worst, Average, and Best cases of an algorithm: 1. Worst Case Analysis (Mostly used) In the worst-case analysis, we calculate the upper bound on
      10 min read

    • Types of Asymptotic Notations in Complexity Analysis of Algorithms
      We have discussed Asymptotic Analysis, and Worst, Average, and Best Cases of Algorithms. The main idea of asymptotic analysis is to have a measure of the efficiency of algorithms that don't depend on machine-specific constants and don't require algorithms to be implemented and time taken by programs
      8 min read

    • How to Analyse Loops for Complexity Analysis of Algorithms
      We have discussed Asymptotic Analysis, Worst, Average and Best Cases and Asymptotic Notations in previous posts. In this post, an analysis of iterative programs with simple examples is discussed. The analysis of loops for the complexity analysis of algorithms involves finding the number of operation
      15+ min read

    • How to analyse Complexity of Recurrence Relation
      The analysis of the complexity of a recurrence relation involves finding the asymptotic upper bound on the running time of a recursive algorithm. This is usually done by finding a closed-form expression for the number of operations performed by the algorithm as a function of the input size, and then
      7 min read

    • Introduction to Amortized Analysis
      Amortized Analysis is used for algorithms where an occasional operation is very slow, but most other operations are faster. In Amortized Analysis, we analyze a sequence of operations and guarantee a worst-case average time that is lower than the worst-case time of a particularly expensive operation.
      10 min read

    Asymptotic Notations

    • Big O Notation Tutorial - A Guide to Big O Analysis
      Big O notation is a powerful tool used in computer science to describe the time complexity or space complexity of algorithms. Big-O is a way to express the upper bound of an algorithm’s time or space complexity. Describes the asymptotic behavior (order of growth of time or space in terms of input si
      10 min read

    • Big O vs Theta Θ vs Big Omega Ω Notations
      1. Big O notation (O): It defines an upper bound on order of growth of time taken by an algorithm or code with input size. Mathematically, if f(n) describes the running time of an algorithm; f(n) is O(g(n)) if there exist positive constant C and n0 such that, 0 <= f(n) <= Cg(n) for all n >=
      3 min read

    • Examples of Big-O analysis
      Prerequisite: Analysis of Algorithms | Big-O analysis In the previous article, the analysis of the algorithm using Big O asymptotic notation is discussed. In this article, some examples are discussed to illustrate the Big O time complexity notation and also learn how to compute the time complexity o
      13 min read

    • Difference between big O notations and tilde
      In asymptotic analysis of algorithms we often encounter terms like Big-Oh, Omega, Theta and Tilde, which describe the performance of an algorithm. You can refer to the following links to get more insights about asymptotic analysis : Analysis of Algorithms Different NotationsDifference between Big Oh
      4 min read

    • Analysis of Algorithms | Big-Omega Ω Notation
      In the analysis of algorithms, asymptotic notations are used to evaluate the performance of an algorithm, in its best cases and worst cases. This article will discuss Big-Omega Notation represented by a Greek letter (Ω). Table of Content What is Big-Omega Ω Notation?Definition of Big-Omega Ω Notatio
      9 min read

    • Analysis of Algorithms | Θ (Theta) Notation
      In the analysis of algorithms, asymptotic notations are used to evaluate the performance of an algorithm by providing an exact order of growth. This article will discuss Big - Theta notations represented by a Greek letter (Θ). Definition: Let g and f be the function from the set of natural numbers t
      6 min read

geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences