Arrays for Competitive Programming
Last Updated : 21 May, 2024
In this article, we will be discussing Arrays which is one of the most commonly used data structure. It also plays a major part in Competitive Programming. Moreover, we will see built-in methods used to write short codes for array operations that can save some crucial time during contests.
What are Arrays in Programming?
An array is a collection of items of the same variable type that are stored at contiguous memory locations. It’s one of the most popular and simple data structures and is often used to implement other data structures. Each item in an array is indexed starting with 0.
Significance of Arrays in Competitive Programming (CP):
In CP, we require the solutions to be fast, array is one such data structure which provide O(1) access of data elements and it can provide various operations to be formed in O(log N) or O(N) traversals.
Significance of Arrays in comparison to other similar data structures:
Characteristics | Arrays | Linked Lists | Stacks | Queues | Hash Tables |
---|
Access Time | Constant time (O(1)) | Linear time (O(n)) | Constant time (O(1)) | Constant time (O(1)) | Average O(1), Worst O(n) |
---|
Memory Allocation | Contiguous | Non-contiguous | - | - | - |
---|
Size Flexibility | Fixed size or dynamic with resizing | Dynamic | Dynamic | Dynamic | Dynamic |
---|
Insertion/Deletion Efficiency | Linear time (O(n)) for resizing | Constant time (O(1)) for specific location, Linear time (O(n)) for general | Constant time (O(1)) | Constant time (O(1)) | Average O(1), Worst O(n) |
---|
Order of Elements | Maintains order | No inherent order | LIFO (Last-In-First-Out) | FIFO (First-In-First-Out) | - |
---|
Common Applications | General-purpose data storage and manipulation | Symbol tables, memory allocation | Managing function calls, recursion | Task scheduling, breadth-first search | Databases, caching, symbol tables |
---|
How to implement Arrays in different Programming Languages?
Since the arrays are static data structures which results in a limited usage therefore various languages provide dynamic arrays such as:
Language | Static Implementation of Arrays | Dynamic Implementation of Arrays |
---|
C | Pointer Arrays | Array implementations through Dynamic Memory Allocations |
C++ | Pointer Arrays | Vectors |
Java | Array Object of Wrapper Classes | ArrayList |
Python | - | List |
C# | Pointer Array
| List |
JavaScript | - | List |
Array Hacks for Competitive Programming (CP):
1. Creating (Declaration) of Array in 1-Line:
C++
Java List<Integer> list = new ArrayList<>(); Collections.fill(list, 4);
Python size=10 my_list = [4] * size
JavaScript
Time Complexity: O(N)
2. Creating (Declaration & Initialization) of Array with some Value X in 1-Line:
C++
Java List<Integer> list = new ArrayList<Integer>(); Collections.fill(list, 4);
Python size=10 my_list = [4] * size
JavaScript const n = 5; // Example array size const X = 10; // Example value to fill const arr = Array.from({ length: n }, () => X);
Time Complexity: O(N)
3. Input, Access, and Output elements in Array in O(1) time
C++ #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; // Read the size of the array vector<int> array(n); // Declare a vector to store integers // Taking input in the vector for (int i = 0; i < n; i++) { cin >> array[i]; } // Accessing the i'th element of the vector int i = 5; if (i >= 0 && i < n) { int x = array[i]; cout << "The element at index " << i << " is: " << x << std::endl; } else { cout << "Index out of bounds." << std::endl; } return 0; }
Java import java.util.Scanner; import java.util.ArrayList; import java.util.NoSuchElementException; // Add this line public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); // Declare an ArrayList to store integers ArrayList<Integer> array = new ArrayList<>(); try { int n = scanner.nextInt(); // Read the size of the array // Taking input in the ArrayList for (int i = 0; i < n; i++) { int element = scanner.nextInt(); array.add(element); } // Accessing the i'th element of the ArrayList int i = 5; if (i >= 0 && i < array.size()) { int x = array.get(i); System.out.println("The element at index " + i + " is: " + x); } else { System.out.println("Index out of bounds."); } } catch (NoSuchElementException e) { System.out.println("Input not provided or input format mismatch."); } } }
Python n = int(input()) # Read the size of the array # Taking input in the list array = [int(input()) for _ in range(n)] # Accessing the i'th element of the list i = 5 if 0 <= i < len(array): x = array[i] print(f"The element at index {i} is: {x}") else: print("Index out of bounds.")
C# using System; class Program { static void Main() { // Read the size of the array int n = Convert.ToInt32(Console.ReadLine()); // Declare a list to store integers var array = new System.Collections.Generic.List<int>(); // Taking input in the list for (int j = 0; j < n; j++) { array.Add(Convert.ToInt32(Console.ReadLine())); } // Accessing the i'th element of the list int i = 5; if (i >= 0 && i < array.Count) { int x = array[i]; Console.WriteLine($"The element at index {i} is: {x}"); } else { Console.WriteLine("Index out of bounds."); } } } //This code is contributed by Aman.
JavaScript // Read the size of the array let n = prompt('Enter the size of the array: '); let array = []; // Declare an array to store integers // Function to handle recursive reading of array elements function readArrayElements(i, n) { if(i == n) { // Accessing the i'th element of the array let i = 5; if (i >= 0 && i < n) { let x = array[i]; console.log("The element at index " + i + " is: " + x); } else { console.log("Index out of bounds."); } } else { let element = prompt('Enter element ' + (i+1) + ': '); array[i] = parseInt(element); // Add element to array readArrayElements(i+1, n); // Recursive call for next element } } // Start reading array elements readArrayElements(0, n);
OutputIndex out of bounds.
Time Complexity: O(1)
4. Finding (Printing) Size or Length of the Array:
C++ vector<int> array; // variable s stores the size of the array int s = array.size();
Java ArrayList<Integer> array = new ArrayList(); int s = array.size();
Python # Declare a list to store integers array = [] # Variable s stores the size of the list s = len(array) print("The size of the list is:", s)
JavaScript // Declare an array to store integers let array = []; // Variable s stores the size of the array let s = array.length; console.log("The size of the array is:", s);
Time Complexity: O(1)
5. Clear/Empty Array Elements in one line:
C++
Java
Python
JavaScript
Time Complexity: O(N)
6. Inserting and Deleting element at the end of the array:
C++ #include<bits/stdc++.h> int main() { std::vector<int> vec; vec.push_back(5); // Inserts 5 at the end vec.push_back(10); // Inserts 10 at the end vec.pop_back(); // Removes the last element (10) // Print the last element of the vector std::cout << vec.back() << std::endl; return 0; }
Java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<Integer> list = new ArrayList<Integer>(); list.add(5); // Inserts 5 at the end list.add(10); // Inserts 10 at the end // Remove the last element (10) if (!list.isEmpty()) { list.remove(list.size() - 1); } // Print the last element of the ArrayList System.out.println( list.get(list.size() - 1)); } }
Python # Create an empty list vec = [] # Inserts 5 at the end vec.append(5) # Inserts 10 at the end vec.append(10) # Removes the last element (10) vec.pop() # Print the list print(vec)
JavaScript let vec = []; vec.push(5); // Inserts 5 at the end vec.push(10); // Inserts 10 at the end vec.pop(); // Removes the last element (10) // Print the array after popping console.log(vec); // Output: [5]
Time Complexity: O(1)
7. Swapping Elements in array in one line:
C++ #include<bits/stdc++.h> #include<algorithms> using namespace std; int main(){ int a=5; int b=6; swap(a,b); }
Java import java.util.*; public class Main { public static void main(String[] args) { int a = 5; int b = 6; int temp = a; a = b; b = temp; } }
Python
JavaScript let a = 5; let b = 6; [a, b] = [b, a];
Time Complexity: O(1)
8. Finding minimum and maximum element of the array:
C++ #include <bits/stdc++.h> using namespace std; int main() { vector<int> arr = {4, 2, 3, 5, 8}; int min = *min_element(arr.begin(), arr.end()); int max = *max_element(arr.begin(), arr.end()); // Do something with min and max }
Java import java.util.ArrayList; import java.util.Collections; import java.util.List; public class Main { public static void main(String[] args) { List<Integer> arr = new ArrayList<>(); arr.add(4); arr.add(2); arr.add(3); arr.add(5); arr.add(8); int min = Collections.min(arr); int max = Collections.max(arr); } }
Python arr = [4, 2, 3, 5, 8] minimum = min(arr) maximum = max(arr)
JavaScript function main() { const arr = [4, 2, 3, 5, 8]; const min = Math.min(...arr); const max = Math.max(...arr); console.log("Minimum:", min); console.log("Maximum:", max); } main();
Time Complexity: O(1)
Array Concepts for Competitive Programming (CP):
2-Dimensional arrays
We define a 2 dimentional arrays as table like structure with n number of rows and m number of columns. We can access them using notation Array_name[row_number][column_number].
C++ #include <iostream> #include <vector> using namespace std; int main() { // declaring two dimensional array int n, m; // assuming n and m are defined elsewhere cin >> n >> m; // assuming n and m are the dimensions of the array vector<vector<int>> Two_D_array(n, vector<int>(m)); // taking input in the array for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ cin >> Two_D_array[i][j]; } } }
Java import java.util.ArrayList; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); // Number of rows int m = scanner.nextInt(); // Number of columns ArrayList<ArrayList<Integer>> TwoDArrayList = new ArrayList<>(); // Initialize the ArrayList for (int i = 0; i < n; i++) { TwoDArrayList.add(new ArrayList<>()); } // Taking input in the ArrayList for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { int value = scanner.nextInt(); TwoDArrayList.get(i).add(value); } } } }
Python n = int(input("Enter the number of rows: ")) m = int(input("Enter the number of columns: ")) TwoDList = [] # Initialize the list of lists for i in range(n): TwoDList.append([]) # Taking input in the list of lists for i in range(n): for j in range(m): value = int(input("Enter value for position ({}, {}): ".format(i, j))) TwoDList[i].append(value)
JavaScript let n = prompt("Enter the number of rows: "); let m = prompt("Enter the number of columns: "); let TwoDList = []; // Initialize the list of lists for (let i = 0; i < n; i++) { TwoDList.push([]); } // Taking input in the list of lists for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { let value = prompt(`Enter value for position (${i}, ${j}): `); TwoDList[i].push(parseInt(value)); } }
Sparse Array:
A sparse array or sparse matrix is an array in which most of the elements are zero. A sparse array is a data structure that efficiently represents and stores arrays where the majority of elements have the same default value. Instead of explicitly storing every element, a sparse array only records the non-default values along with their corresponding indices, reducing storage space and improving computational efficiency.
C++ // Implementation of array representation // of the sparse array #include <iostream> using namespace std; int main() { int sparse[4][4] = { { 0, 0, 7, 0 }, { 1, 0, 0, 0 }, { 2, 0, 5, 0 }, { 0, 8, 0, 4 } }; int s = 0; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i][j] != 0) s++; int representsparse[3][s]; int k = 0; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i][j] != 0) { representsparse[0][k] = i; representsparse[1][k] = j; representsparse[2][k] = sparse[i][j]; k++; } cout << "Representation of Sparse array using arrays : " "\n"; for (int i = 0; i < 3; i++) { if(i == 0) cout << "row: "; else if(i == 1) cout << "column: "; else cout << "value: "; for (int j = 0; j < s; j++) cout << " " << representsparse[i][j]; cout << "\n"; } return 0; }
Java public class SparseArrayRepresentation { public static void main(String[] args) { // Original sparse array int[][] sparse = { {0, 0, 7, 0}, {1, 0, 0, 0}, {2, 0, 5, 0}, {0, 8, 0, 4} }; // Count the non-zero elements in the sparse array int s = 0; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i][j] != 0) s++; // Create a new array to represent the sparse array int[][] representsparse = new int[3][s]; int k = 0; // Fill the representsparse array with row, column, and value of non-zero elements for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i][j] != 0) { representsparse[0][k] = i; representsparse[1][k] = j; representsparse[2][k] = sparse[i][j]; k++; } // Display the representation of the sparse array System.out.println("Representation of Sparse array using arrays : "); for (int i = 0; i < 3; i++) { if (i == 0) System.out.print("row: "); else if (i == 1) System.out.print("column: "); else System.out.print("value: "); for (int j = 0; j < s; j++) System.out.print(" " + representsparse[i][j]); System.out.println(); } } }
Python # Implementation of array representation # of the sparse array # Define the sparse array sparse = [ [0, 0, 7, 0], [1, 0, 0, 0], [2, 0, 5, 0], [0, 8, 0, 4] ] # Initialize a variable to count non-zero elements s = 0 for i in range(4): for j in range(4): if sparse[i][j] != 0: s += 1 # Create a 2D array to represent the sparse array representsparse = [[0] * s for _ in range(3)] # Populate the representation array k = 0 for i in range(4): for j in range(4): if sparse[i][j] != 0: representsparse[0][k] = i representsparse[1][k] = j representsparse[2][k] = sparse[i][j] k += 1 # Display the representation of the sparse array print("Representation of Sparse array using arrays:\n") for i in range(3): if i == 0: print("row: ", end="") elif i == 1: print("column: ", end="") else: print("value: ", end="") for j in range(s): print(" ", representsparse[i][j], end="") print()
C# using System; class Program { static void Main() { // Input sparse array int[,] sparse = { { 0, 0, 7, 0 }, { 1, 0, 0, 0 }, { 2, 0, 5, 0 }, { 0, 8, 0, 4 } }; // Count non-zero elements in the sparse array int s = 0; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i, j] != 0) s++; // Create representation array to store non-zero elements int[,] representsparse = new int[3, s]; int k = 0; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (sparse[i, j] != 0) { representsparse[0, k] = i; representsparse[1, k] = j; representsparse[2, k] = sparse[i, j]; k++; } // Output representation of the sparse array using arrays Console.WriteLine("Representation of Sparse array using arrays :\n"); for (int i = 0; i < 3; i++) { if (i == 0) Console.Write("row: "); else if (i == 1) Console.Write("column: "); else Console.Write("value: "); for (int j = 0; j < s; j++) Console.Write(" " + representsparse[i, j]); Console.WriteLine(); } } } // This code is contributed by Monu Yadav
JavaScript // JavaScript Implementation // Implementation of array representation // of the sparse array const sparse = [ [0, 0, 7, 0], [1, 0, 0, 0], [2, 0, 5, 0], [0, 8, 0, 4] ]; let s = 0; for (let i = 0; i < 4; i++) for (let j = 0; j < 4; j++) if (sparse[i][j] !== 0) s++; const representsparse = [[], [], []]; let k = 0; for (let i = 0; i < 4; i++) for (let j = 0; j < 4; j++) if (sparse[i][j] !== 0) { representsparse[0][k] = i; representsparse[1][k] = j; representsparse[2][k] = sparse[i][j]; k++; } console.log("Representation of Sparse array using arrays : \n"); for (let i = 0; i < 3; i++) { if (i === 0) console.log("row: "); else if (i === 1) console.log("column: "); else console.log("value: "); console.log(representsparse[i]); } // This code is contributed by Sakshi
OutputRepresentation of Sparse array using arrays : row: 0 1 2 2 3 3 column: 2 0 0 2 1 3 value: 7 1 2 5 8 4
Jagged Arrays
Jagged arrays, also known as "ragged arrays," are multidimensional arrays in which each row can have a different length. In other words, a jagged array is an array of arrays, where the sub-arrays can have different lengths. This is in contrast to a regular (rectangular) multidimensional array, where all rows have the same number of elements.
C++ #include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; // number of rows in the jagged array // jagged array having n rows vector<vector<int>> jagged_arr(n); for (int i = 0; i < n; i++) { // number of columns in current row int k; cin >> k; for (int j = 0; j < k; j++) { // taking input of i'th row and k'th column int x; cin >> x; jagged_arr[i].push_back(x); } } return 0; }
Java import java.util.ArrayList; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); // Number of rows ArrayList<ArrayList<Integer>> jaggedArr = new ArrayList<>(); for (int i = 0; i < n; i++) { int k = scanner.nextInt(); // Number of columns in current row ArrayList<Integer> row = new ArrayList<>(); for (int j = 0; j < k; j++) { int x = scanner.nextInt(); // Input for i'th row and k'th column row.add(x); } jaggedArr.add(row); } } }
Python n = int(input("Enter the number of rows: ")) jagged_arr = [] for i in range(n): k = int(input(f"Enter the number of columns in row {i + 1}: ")) row = [] for j in range(k): x = int(input(f"Enter the value for row {i + 1}, column {j + 1}: ")) row.append(x) jagged_arr.append(row)
JavaScript const readline = require('readline'); const rl = readline.createInterface({ input: process.stdin, output: process.stdout }); rl.question('Enter the number of rows in the jagged array: ', (n) => { n = parseInt(n); let jagged_arr = []; function inputJaggedArray(index) { if (index === n) { console.log(jagged_arr); rl.close(); return; } rl.question(`Enter the number of columns in row ${index + 1}: `, (k) => { k = parseInt(k); let row = []; inputRowElements(index, k, 0, row); }); } function inputRowElements(rowIndex, k, j, row) { if (j === k) { jagged_arr.push(row); inputJaggedArray(rowIndex + 1); return; } rl.question(`Enter the element at row ${rowIndex + 1} and column ${j + 1}: `, (x) => { x = parseInt(x); row.push(x); inputRowElements(rowIndex, k, j + 1, row); }); } inputJaggedArray(0); });
Frequency Array:
Hashing using arrays, often referred to as "hash tables" or "hash maps," is a data structure and technique used to efficiently store, retrieve, and manage key-value pairs. It involves using an array as the underlying data structure where data is stored based on a specific hashing function. Hashing using arrays is widely used in competitive programming.
If all the array values are within the range of the size of the array, then array can be used for hashing key-value pairs, providing O(1) complexity for each operation i.e. fetch and update.
C++ #include <bits/stdc++.h> using namespace std; int main() { vector<int> arr = {4, 2, 2, 5, 4, 4, 1, 5, 4}; vector<int> hash_table(arr.size(), 0); for (int i = 0; i < arr.size(); i++) { hash_table[arr[i]]++; } }
Java import java.util.Arrays; import java.util.List; import java.util.ArrayList; import java.util.Collections; public class Main { public static void main(String[] args) { List<Integer> arr = Arrays.asList(4, 2, 2, 5, 4, 4, 1, 5, 4); List<Integer> hashTable = new ArrayList<>(Collections.nCopies(arr.size(), 0)); for (int i = 0; i < arr.size(); i++) { int element = arr.get(i); hashTable.set(element, hashTable.get(element) + 1); } } }
Python arr = [4, 2, 2, 5, 4, 4, 1, 5, 4] hash_table = [0] * len(arr) for element in arr: hash_table[element] += 1
JavaScript let arr = [4, 2, 2, 5, 4, 4, 1, 5, 4]; let hashTable = new Array(arr.length).fill(0); for (let i = 0; i < arr.length; i++) { hashTable[arr[i]]++; }
Related articles on Competitive Programming (CP):
Similar Reads
Queue for Competitive Programming
In competitive programming, a queue is a data structure that is often used to solve problems that involve tasks that need to be completed in a specific order. This article explores the queue data structure and identifies its role as a critical tool for overcoming coding challenges in competitive pro
8 min read
Stack for Competitive Programming
For competitive programming to be successful, efficient data structures and algorithms are essential. The stack is one such tool. In this article, we will examine how stack data structures play an important role in solving problems efficiently during competitive programming challenges. We will explo
7 min read
7 Best Books for Competitive Programming
Do you have a dream to win a Gold Medal in the Olympics of Programming (ACM ICPC)? Do you want to ace your career with Google Kickstart or want to win a prize amount of $20,000 to become a world champion in Facebook Hackercup or Google Code jam? Then you have to be an out-of-the-box problem solver.
8 min read
Best Courses on Competitive Programming
Competitive programming has gone beyond being a niche interest. Has become a skill, for computer science enthusiasts. Being able to solve algorithmic problems is highly valued in the tech industry. Recognizing this demand various online platforms offer courses tailored to skill levels and learning p
5 min read
5 Best Languages for Competitive Programming
Needless to say, Competitive Programming is one of the most crucial and popular aspects of a programmer's journey. Though, all the programmers are strongly recommended to participate in such coding challenges to enhance their coding skills and to get various ravishing prizes, rewards, and other care
5 min read
Competitive Programming - A Complete Guide
Competitive Programming is a mental sport that enables you to code a given problem under provided constraints. The purpose of this article is to guide every individual possessing a desire to excel in this sport. This article provides a detailed syllabus for Competitive Programming designed by indust
8 min read
Learning the art of Competitive Programming
Learning the art of Competitive Programming How to begin with Competitive Programming?Top 10 Algorithms and Data Structures for Competitive ProgrammingHow to prepare for ACM â ICPC?How to prepare for Google Asia Pacific University (APAC) Test ?Remaining Ahead in Competitive Programming:Master in com
2 min read
Basics of Combinatorics for Competitive Programming
Welcome to the world of competitive programming, where we'll explore the ABCs of Combinatorics - a fancy term for counting and arranging things. Think of it like solving puzzles with numbers and patterns. In this article, we're diving into the Basics of Combinatorics that every competitive programme
10 min read
String Guide for Competitive Programming
Strings are a sequence of characters, and are one of the most fundamental data structures in Competitive Programming. String problems are very common in competitive programming contests, and can range from simple to very challenging. In this article we are going to discuss about most frequent string
15 min read
My Journey of Competitive Programming
Hello geeks, Today I want to share with you my competitive programming journey. Competitive programming means solving problems in different platforms. There are many benefits to do this. Even many companies directly select candidates through their coding profile. And you can also add this profile in
3 min read